mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
When investigating failures in https://github.com/pytorch/pytorch/pull/100017 I realized that we were reentering FakeTensorMode even though there was already one on the stack. Although we have attempted assert for these cases in the past, e.g., as in https://github.com/pytorch/pytorch/pull/97186 it seems that the existing protections were insufficient. In this particular case, the reapplication of FakeTensorMode was due to an interaction with NotImplemented multiple dispatch handling. If proxy tensor mode detects an unrecognized tensor type (this includes FakeTensor, if it is not tracked with a proxy), it will return NotImplemented to give this tensor a chance to unpack itself into proxyable operation. However, this is never the right thing for FakeTensor, where no unpacking is possible. However, today, FakeTensor attempts to reapply the FakeTensorMode, resulting in FakeTensorMode being twice on the stack. This PR does a number of things: * It adds an assert in `FakeTensorMode.__torch_dispatch__` that you must not already have this mode on the stack, this is ALWAYS an error * It modifies `FakeTensor.__torch_dispatch__` to return `NotImplemented` if the mode is already active. This prevents us from readding the mode on the stack * It adds a new logging artifact `not_implemented` which you can use to get debug logs about all of the times a `__torch_dispatch__` handler returned NotImplemented and why it did so. Your subclass has to manually opt into this logging, but I inserted the necessary logs for ProxyTensorMode and FakeTensor(Mode) * `with fake_mode` now no-ops if the fake mode is already on the stack, which is what users want anyway * I am BREAKING pre-autograd tracing, because it is currently doing something weird with the original C++ mode stack. Brian is going to follow up with a fix next week. Signed-off-by: Edward Z. Yang <ezyang@meta.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/102091 Approved by: https://github.com/thiagocrepaldi, https://github.com/eellison, https://github.com/wanchaol, https://github.com/bdhirsh
909 lines
36 KiB
Python
909 lines
36 KiB
Python
# Owner(s): ["module: masked operators"]
|
|
|
|
import torch
|
|
from torch.testing._internal.common_utils import (
|
|
TestCase,
|
|
run_tests,
|
|
make_tensor,
|
|
parametrize,
|
|
instantiate_parametrized_tests,
|
|
)
|
|
from torch.testing._internal.common_device_type import (
|
|
instantiate_device_type_tests,
|
|
ops,
|
|
)
|
|
from torch.testing._internal.common_methods_invocations import (
|
|
SampleInput,
|
|
binary_ufuncs,
|
|
reduction_ops,
|
|
unary_ufuncs,
|
|
)
|
|
|
|
from torch.masked import as_masked_tensor, masked_tensor, _combine_input_and_mask
|
|
from torch.masked.maskedtensor.core import _masks_match, _tensors_match
|
|
from torch.masked.maskedtensor.unary import NATIVE_INPLACE_UNARY_FNS, NATIVE_UNARY_FNS, UNARY_NAMES
|
|
from torch.masked.maskedtensor.binary import NATIVE_BINARY_FNS, NATIVE_INPLACE_BINARY_FNS, BINARY_NAMES
|
|
from torch.masked.maskedtensor.reductions import REDUCE_NAMES
|
|
|
|
|
|
def _compare_mt_t(mt_result, t_result, rtol=1e-05, atol=1e-05):
|
|
mask = mt_result.get_mask()
|
|
mt_result_data = mt_result.get_data()
|
|
if mask.layout in {torch.sparse_coo, torch.sparse_csr}:
|
|
mask = mask.to_dense()
|
|
if mt_result_data.layout in {torch.sparse_coo, torch.sparse_csr}:
|
|
mt_result_data = mt_result_data.to_dense()
|
|
a = mt_result_data.detach().masked_fill_(~mask, 0)
|
|
b = t_result.detach().masked_fill_(~mask, 0)
|
|
if not _tensors_match(a, b, exact=False, rtol=rtol, atol=atol):
|
|
raise ValueError("The data in MaskedTensor a and Tensor b do not match")
|
|
|
|
def _compare_mts(mt1, mt2, rtol=1e-05, atol=1e-08):
|
|
mt_data1 = mt1.get_data()
|
|
mt_data2 = mt2.get_data()
|
|
if mt_data1.layout != mt_data2.layout:
|
|
raise ValueError("mt1's data and mt2's data do not have the same layout. "
|
|
f"mt1.get_data().layout = {mt_data1.layout} while mt2.get_data().layout = {mt_data2.layout}")
|
|
|
|
mask = mt1.get_mask()
|
|
mask2 = mt2.get_mask()
|
|
if not _masks_match(mt1, mt2):
|
|
raise ValueError("mt1 and mt2 must have matching masks")
|
|
if mask.layout != mask2.layout:
|
|
raise ValueError("mt1's mask and mt2's mask do not have the same layout. "
|
|
f"mt1.get_mask().layout = {mask.layout} while mt2.get_mask().layout = {mask2.layout}")
|
|
if mask.layout in {torch.sparse_coo, torch.sparse_csr}:
|
|
mask = mask.to_dense()
|
|
|
|
if mt_data1.layout in {torch.sparse_coo, torch.sparse_csr}:
|
|
mt_data1 = mt_data1.to_dense()
|
|
mt_data2 = mt_data2.to_dense()
|
|
a = mt_data1.detach().masked_fill_(~mask, 0)
|
|
b = mt_data2.detach().masked_fill_(~mask, 0)
|
|
|
|
if not _tensors_match(a, b, exact=False, rtol=rtol, atol=atol):
|
|
raise ValueError("The data in MaskedTensor mt1 and MaskedTensor mt2 do not match")
|
|
|
|
|
|
def _create_random_mask(shape, device):
|
|
return make_tensor(shape, device=device, dtype=torch.bool)
|
|
|
|
def _generate_sample_data(
|
|
device="cpu", dtype=torch.float, requires_grad=True, layout=torch.strided
|
|
):
|
|
assert layout in {
|
|
torch.strided,
|
|
torch.sparse_coo,
|
|
torch.sparse_csr,
|
|
}, "Layout must be strided/sparse_coo/sparse_csr"
|
|
shapes = [
|
|
[],
|
|
[2],
|
|
[3, 5],
|
|
[3, 2, 1, 2],
|
|
]
|
|
inputs = []
|
|
for s in shapes:
|
|
data = make_tensor(s, device=device, dtype=dtype, requires_grad=requires_grad) # type: ignore[arg-type]
|
|
mask = _create_random_mask(s, device)
|
|
if layout == torch.sparse_coo:
|
|
mask = mask.to_sparse_coo().coalesce()
|
|
data = data.sparse_mask(mask).requires_grad_(requires_grad)
|
|
elif layout == torch.sparse_csr:
|
|
if data.ndim != 2 and mask.ndim != 2:
|
|
continue
|
|
mask = mask.to_sparse_csr()
|
|
data = data.sparse_mask(mask)
|
|
inputs.append(SampleInput(data, kwargs={"mask": mask}))
|
|
return inputs
|
|
|
|
def _fix_fn_name(fn_name):
|
|
if fn_name[-1] == "_":
|
|
fn_name = fn_name[:-1]
|
|
return fn_name
|
|
|
|
|
|
class TestBasics(TestCase):
|
|
def test_invalid_tensor_inputs(self, device):
|
|
data = torch.randn((3, 4), device=device)
|
|
mask = _create_random_mask((3, 4), device=device)
|
|
mt = masked_tensor(data, mask)
|
|
|
|
with self.assertRaisesRegex(TypeError, "data must be a Tensor"):
|
|
masked_tensor(mt, mask)
|
|
with self.assertRaisesRegex(TypeError, "data must be a Tensor"):
|
|
masked_tensor(0, mask)
|
|
with self.assertRaisesRegex(TypeError, "mask must be a Tensor"):
|
|
masked_tensor(data, mt)
|
|
with self.assertRaisesRegex(TypeError, "mask must be a Tensor"):
|
|
masked_tensor(data, 0)
|
|
|
|
def test_diff_layouts(self, device):
|
|
data = torch.randn((3, 4), device=device).to_sparse_coo()
|
|
mask = _create_random_mask((3, 4), device=device)
|
|
with self.assertRaisesRegex(TypeError, "data and mask must have the same layout"):
|
|
masked_tensor(data, mask)
|
|
|
|
def test_diff_dim(self, device):
|
|
data = torch.randn((3, 4, 5), device=device)
|
|
mask = _create_random_mask((3, 4), device=device)
|
|
with self.assertRaisesRegex(ValueError, "data.dim\\(\\) must equal mask.dim\\(\\)"):
|
|
masked_tensor(data, mask)
|
|
|
|
def test_diff_sizes(self, device):
|
|
data = torch.randn((3, 4), device=device)
|
|
mask = _create_random_mask((3, 3), device=device)
|
|
with self.assertRaisesRegex(ValueError, "data.size\\(\\) must equal mask.size\\(\\)"):
|
|
masked_tensor(data, mask)
|
|
|
|
def test_grad_warning(self, device):
|
|
data = torch.randn((3, 4), device=device, requires_grad=True)
|
|
mask = _create_random_mask((3, 4), device=device)
|
|
msg = "It is not recommended to create a MaskedTensor with a tensor that requires_grad."
|
|
with self.assertWarnsRegex(UserWarning, msg):
|
|
mt = masked_tensor(data, mask)
|
|
|
|
def test_add(self, device):
|
|
data = torch.arange(5.0, device=device)
|
|
mask = torch.tensor([True, True, False, True, False], device=device)
|
|
m0 = masked_tensor(data, mask)
|
|
m1 = masked_tensor(data, ~mask)
|
|
with self.assertRaisesRegex(ValueError, "Input masks must match."):
|
|
m0 + m1
|
|
_compare_mts(m0 + m0, masked_tensor(torch.tensor([0., 2, 0, 6, 0], device=device), mask))
|
|
|
|
def test_softmax(self, device):
|
|
data = torch.randn((3, 4), device=device) * 0.1
|
|
mask = torch.tensor(
|
|
[
|
|
[True, True, True, False],
|
|
[False, True, False, True],
|
|
[True, True, False, False],
|
|
],
|
|
device=device
|
|
)
|
|
mt = masked_tensor(data, mask, requires_grad=True)
|
|
masked_res = torch.softmax(mt, -1)
|
|
masked_res.sum().backward()
|
|
xinf = data.masked_fill(~mask, float("-inf")).detach().clone().requires_grad_()
|
|
tensor_res = torch.softmax(xinf, -1)
|
|
tensor_res.sum().backward()
|
|
|
|
_compare_mt_t(masked_res, tensor_res)
|
|
_compare_mt_t(mt.grad, xinf.grad, atol=1e-06)
|
|
|
|
def test_where(self, device):
|
|
data = torch.tensor([-10.0, -5, 0, 5, 10, 50, 60, 70, 80, 90, 100], device=device)
|
|
mask = data < 0
|
|
|
|
mx = masked_tensor(data, mask, requires_grad=True)
|
|
my = masked_tensor(torch.ones_like(data), ~mask, requires_grad=True)
|
|
masked_res = torch.where(mask, torch.exp(mx), my)
|
|
masked_res.sum().backward()
|
|
|
|
x = data.detach().clone().requires_grad_()
|
|
y = torch.ones_like(x, device=device, requires_grad=True)
|
|
tensor_res = torch.where(mask, torch.exp(x), y)
|
|
tensor_res.sum().backward()
|
|
|
|
_compare_mt_t(masked_res, tensor_res)
|
|
_compare_mt_t(mx.grad, x.grad)
|
|
_compare_mt_t(my.grad, y.grad)
|
|
|
|
def test_to_sparse(self, device):
|
|
for sample in _generate_sample_data(device=device):
|
|
data = sample.input
|
|
mask = sample.kwargs["mask"]
|
|
mt = masked_tensor(data.clone().detach(), mask, requires_grad=True)
|
|
|
|
sparse_mt = mt.to_sparse()
|
|
data.to_sparse().to_dense().sum().backward()
|
|
sparse_mt.to_dense().sum().backward()
|
|
|
|
_compare_mt_t(sparse_mt, data)
|
|
_compare_mt_t(mt.grad, data.grad)
|
|
|
|
def test_to_dense(self, device):
|
|
samples = _generate_sample_data(
|
|
device=device,
|
|
layout=torch.sparse_coo
|
|
) + _generate_sample_data(device=device, layout=torch.sparse_csr)
|
|
for sample in samples:
|
|
data = sample.input
|
|
mask = sample.kwargs["mask"]
|
|
mt = masked_tensor(data, mask, requires_grad=True)
|
|
|
|
dense_data = data.to_dense().detach().clone().requires_grad_(True)
|
|
dense_mt = mt.to_dense()
|
|
dense_data.sum().backward()
|
|
dense_mt.sum().backward()
|
|
|
|
_compare_mt_t(dense_mt, dense_data)
|
|
_compare_mt_t(mt.grad.to_dense(), dense_data.grad)
|
|
|
|
def test_to_dense_and_sparse_coo(self, device):
|
|
for sample in _generate_sample_data(device=device, layout=torch.strided):
|
|
data = sample.input
|
|
mask = sample.kwargs["mask"]
|
|
ms = mask.to_sparse_coo().coalesce()
|
|
|
|
mt = masked_tensor(data, mask, requires_grad=True)
|
|
mts = masked_tensor(data.sparse_mask(ms), ms, requires_grad=True)
|
|
|
|
converted = mt.to_sparse().to_dense()
|
|
converted.sum().backward()
|
|
|
|
converted2 = mts.to_dense()
|
|
converted2.sum().backward()
|
|
|
|
_compare_mts(converted, converted2)
|
|
_compare_mts(mt.grad, mts.grad.to_dense())
|
|
|
|
def test_to_dense_and_sparse_csr(self, device):
|
|
for sample in _generate_sample_data(device=device, layout=torch.strided):
|
|
data = sample.input
|
|
mask = sample.kwargs["mask"]
|
|
if data.ndim != 2:
|
|
continue
|
|
ms = mask.to_sparse_csr()
|
|
|
|
mt = masked_tensor(data, mask, requires_grad=True)
|
|
mts = masked_tensor(data.sparse_mask(ms), ms, requires_grad=True)
|
|
|
|
converted = mt.to_sparse_csr().to_dense()
|
|
converted.sum().backward()
|
|
|
|
converted2 = mts.to_dense()
|
|
converted2.sum().backward()
|
|
|
|
_compare_mts(converted, converted2)
|
|
_compare_mts(mt.grad, mts.grad.to_dense())
|
|
|
|
def test_invalid_sparse_layout(self, device):
|
|
data = torch.randn((3, 4), device=device).to_sparse_csc()
|
|
mask = _create_random_mask((3, 4), device=device).to_sparse_csc()
|
|
with self.assertRaisesRegex(TypeError, "data layout of torch.sparse_csc is not supported"):
|
|
masked_tensor(data, mask)
|
|
|
|
def test_invalid_sparse_coo_values(self, device):
|
|
v = torch.tensor([3, 4, 5], dtype=torch.float32)
|
|
i1 = torch.tensor([[0, 1, 1], [2, 0, 2]])
|
|
i2 = torch.tensor([[0, 1, 1], [2, 1, 2]])
|
|
|
|
t = torch.sparse_coo_tensor(i1, v, (2, 4), device=device)
|
|
mask = torch.sparse_coo_tensor(i2, torch.tensor([True, True, True]), (2, 4), device=device)
|
|
|
|
msg = "data and mask are both sparse COO tensors but do not have the same indices."
|
|
with self.assertRaisesRegex(ValueError, msg):
|
|
masked_tensor(t, mask)
|
|
|
|
def test_invalid_sparse_csr_values(self, device):
|
|
crow_indices1 = [0, 2, 3]
|
|
crow_indices2 = [0, 1, 3]
|
|
col_indices1 = [0, 1, 2]
|
|
col_indices2 = [1, 2, 3]
|
|
|
|
values = [2, 3, 4]
|
|
mask_values = [True, True, True]
|
|
|
|
t1 = torch.sparse_csr_tensor(
|
|
torch.tensor(crow_indices1, dtype=torch.int64),
|
|
torch.tensor(col_indices1, dtype=torch.int64),
|
|
torch.tensor(values),
|
|
size=(2, 4)
|
|
)
|
|
mask1 = torch.sparse_csr_tensor(
|
|
torch.tensor(crow_indices2, dtype=torch.int64),
|
|
torch.tensor(col_indices1, dtype=torch.int64),
|
|
torch.tensor(mask_values),
|
|
dtype=torch.bool,
|
|
size=(2, 4),
|
|
)
|
|
t2 = torch.sparse_csr_tensor(
|
|
torch.tensor(crow_indices2, dtype=torch.int64),
|
|
torch.tensor(col_indices1, dtype=torch.int64),
|
|
torch.tensor(values),
|
|
size=(2, 4),
|
|
)
|
|
mask2 = torch.sparse_csr_tensor(
|
|
torch.tensor(crow_indices2, dtype=torch.int64),
|
|
torch.tensor(col_indices2, dtype=torch.int64),
|
|
torch.tensor(mask_values),
|
|
dtype=torch.bool,
|
|
size=(2, 4),
|
|
)
|
|
|
|
msg = "data and mask are both sparse CSR tensors but do not share either crow or col indices."
|
|
with self.assertRaisesRegex(ValueError, msg):
|
|
masked_tensor(t1, mask1)
|
|
with self.assertRaisesRegex(ValueError, msg):
|
|
masked_tensor(t2, mask2)
|
|
|
|
def test_contiguous(self, device):
|
|
data = torch.randn((3, 3), device=device)
|
|
|
|
contiguous_data = data.clone()
|
|
mask1 = (contiguous_data > 0).bool()
|
|
not_contiguous_data = torch.as_strided(data.clone(), (2, 2), (1, 2))
|
|
mask2 = (not_contiguous_data > 0).bool()
|
|
|
|
contiguous_mt = masked_tensor(contiguous_data, mask1)
|
|
not_contiguous_mt = masked_tensor(not_contiguous_data, mask2)
|
|
|
|
contiguous_mt_sparse = masked_tensor(
|
|
contiguous_data.to_sparse_coo(), mask1.to_sparse_coo()
|
|
)
|
|
not_contiguous_mt_sparse = masked_tensor(
|
|
not_contiguous_data.to_sparse_coo(), mask2.to_sparse_coo()
|
|
)
|
|
|
|
self.assertEqual(contiguous_data.is_contiguous(), True)
|
|
self.assertEqual(not_contiguous_data.is_contiguous(), False)
|
|
|
|
self.assertEqual(contiguous_mt.is_contiguous(), True)
|
|
self.assertEqual(not_contiguous_mt.is_contiguous(), False)
|
|
|
|
error_msg = "MaskedTensors with sparse data do not have is_contiguous"
|
|
for t in [contiguous_mt_sparse, not_contiguous_mt_sparse]:
|
|
with self.assertRaisesRegex(ValueError, error_msg):
|
|
t.is_contiguous()
|
|
with self.assertRaisesRegex(ValueError, error_msg):
|
|
t.contiguous()
|
|
|
|
now_contiguous_mt = not_contiguous_mt.contiguous()
|
|
|
|
_compare_mts(not_contiguous_mt, now_contiguous_mt)
|
|
|
|
self.assertEqual(now_contiguous_mt.is_contiguous(), True)
|
|
self.assertEqual(now_contiguous_mt.get_data().is_contiguous(), True)
|
|
self.assertEqual(now_contiguous_mt.is_contiguous(), True)
|
|
|
|
class TestUnary(TestCase):
|
|
def _get_test_data(self, fn_name):
|
|
data = torch.randn(10, 10)
|
|
mask = torch.rand(10, 10) > 0.5
|
|
fn_name = _fix_fn_name(fn_name)
|
|
if fn_name in ["log", "log10", "log1p", "log2", "sqrt"]:
|
|
data = data.mul(0.5).abs()
|
|
if fn_name in ["rsqrt"]:
|
|
data = data.abs() + 1 # Void division by zero
|
|
if fn_name in ["acos", "arccos", "asin", "arcsin", "logit"]:
|
|
data = data.abs().mul(0.5).clamp(0, 1)
|
|
if fn_name in ["atanh", "arctanh", "erfinv"]:
|
|
data = data.mul(0.5).clamp(-1, 1)
|
|
if fn_name in ["acosh", "arccosh"]:
|
|
data = data.abs() + 1
|
|
if fn_name in ["bitwise_not"]:
|
|
data = data.mul(128).to(torch.int8)
|
|
return data, mask
|
|
|
|
def _get_sample_kwargs(self, fn_name):
|
|
fn_name = _fix_fn_name(fn_name)
|
|
kwargs = {}
|
|
if fn_name in ["clamp", "clip"]:
|
|
kwargs["min"] = -0.5
|
|
kwargs["max"] = 0.5
|
|
return kwargs
|
|
|
|
def _get_sample_args(self, fn_name, data, mask):
|
|
fn_name = _fix_fn_name(fn_name)
|
|
mt = masked_tensor(data, mask)
|
|
t_args = [data]
|
|
mt_args = [mt]
|
|
if fn_name in ["pow"]:
|
|
t_args += [2.0]
|
|
mt_args += [2.0]
|
|
return t_args, mt_args
|
|
|
|
@parametrize("fn", NATIVE_UNARY_FNS)
|
|
def test_unary(self, fn):
|
|
torch.random.manual_seed(0)
|
|
fn_name = fn.__name__
|
|
data, mask = self._get_test_data(fn_name)
|
|
kwargs = self._get_sample_kwargs(fn_name)
|
|
|
|
t_args, mt_args = self._get_sample_args(fn_name, data, mask)
|
|
|
|
mt_result = fn(*mt_args, **kwargs)
|
|
t_result = fn(*t_args, **kwargs)
|
|
_compare_mt_t(mt_result, t_result)
|
|
|
|
@parametrize("fn", NATIVE_INPLACE_UNARY_FNS)
|
|
def test_inplace_unary(self, fn):
|
|
torch.random.manual_seed(0)
|
|
fn_name = fn.__name__
|
|
data, mask = self._get_test_data(fn_name)
|
|
kwargs = self._get_sample_kwargs(fn_name)
|
|
|
|
t_args, mt_args = self._get_sample_args(fn_name, data, mask)
|
|
|
|
mt_result = fn(*mt_args, **kwargs)
|
|
t_result = fn(*t_args, **kwargs)
|
|
_compare_mt_t(mt_result, t_result)
|
|
|
|
class TestBinary(TestCase):
|
|
def _get_test_data(self, fn_name):
|
|
fn_name = _fix_fn_name(fn_name)
|
|
data0 = torch.randn(10, 10)
|
|
data1 = torch.randn(10, 10)
|
|
mask = torch.rand(10, 10) > 0.5
|
|
if fn_name in ["bitwise_and", "bitwise_or", "bitwise_xor"]:
|
|
data0 = data0.mul(128).to(torch.int8)
|
|
data1 = data1.mul(128).to(torch.int8)
|
|
if fn_name in ["bitwise_left_shift", "bitwise_right_shift"]:
|
|
data0 = data0.abs().to(torch.int64)
|
|
data1 = data1.abs().to(torch.int64)
|
|
return data0, data1, mask
|
|
|
|
def _get_sample_kwargs(self, fn_name):
|
|
fn_name = _fix_fn_name(fn_name)
|
|
kwargs = {}
|
|
return kwargs
|
|
|
|
def _yield_sample_args(self, fn_name, data0, data1, mask):
|
|
""" Returns two sets of Tensor and MaskedTensor args for a binary function to compute.
|
|
Tensor args are all the same (just the two provided data tensors),
|
|
while the MaskedTensor args tests both (MaskedTensor, MaskedTensor) and (MaskedTensor, Tensor)
|
|
"""
|
|
fn_name = _fix_fn_name(fn_name)
|
|
mt0 = masked_tensor(data0, mask)
|
|
mt1 = masked_tensor(data1, mask)
|
|
|
|
t_args = [data0, data1]
|
|
mt_args = [mt0, mt1]
|
|
yield t_args, mt_args
|
|
|
|
t_args = [data0, data1]
|
|
mt_args = [mt0, data1]
|
|
yield t_args, mt_args
|
|
|
|
@parametrize("fn", NATIVE_BINARY_FNS)
|
|
def test_binary(self, fn):
|
|
torch.random.manual_seed(0)
|
|
fn_name = fn.__name__
|
|
data0, data1, mask = self._get_test_data(fn_name)
|
|
kwargs = self._get_sample_kwargs(fn_name)
|
|
|
|
for (t_args, mt_args) in self._yield_sample_args(fn_name, data0, data1, mask):
|
|
mt_result = fn(*mt_args, **kwargs)
|
|
t_result = fn(*t_args, **kwargs)
|
|
_compare_mt_t(mt_result, t_result)
|
|
|
|
@parametrize("fn", NATIVE_INPLACE_BINARY_FNS)
|
|
def test_inplace_binary(self, fn):
|
|
torch.random.manual_seed(0)
|
|
fn_name = fn.__name__
|
|
data0, data1, mask = self._get_test_data(fn_name)
|
|
kwargs = self._get_sample_kwargs(fn_name)
|
|
|
|
for (t_args, mt_args) in self._yield_sample_args(fn_name, data0, data1, mask):
|
|
mt_result = fn(*mt_args, **kwargs)
|
|
t_result = fn(*t_args, **kwargs)
|
|
_compare_mt_t(mt_result, t_result)
|
|
|
|
@parametrize("fn_name", ["add", "add_"])
|
|
def test_masks_match(self, fn_name):
|
|
torch.random.manual_seed(0)
|
|
fn = getattr(torch.ops.aten, fn_name)
|
|
data0, data1, mask = self._get_test_data(fn_name)
|
|
mask0 = mask
|
|
mask1 = torch.rand(mask.size()) > 0.5
|
|
mt0 = masked_tensor(data0, mask0)
|
|
mt1 = masked_tensor(data1, mask1)
|
|
try:
|
|
fn(mt0, mt1)
|
|
raise AssertionError()
|
|
except ValueError as e:
|
|
assert (
|
|
"Input masks must match. If you need support for this, please open an issue on Github."
|
|
== str(e)
|
|
)
|
|
|
|
class TestReductions(TestCase):
|
|
def test_max_not_implemented(self):
|
|
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
|
|
m = torch.tensor([[True, False, False], [False, True, False]])
|
|
mt = masked_tensor(d, m)
|
|
with self.assertRaisesRegex(TypeError, "torch._ops.aten.max.default"):
|
|
mt.max()
|
|
|
|
def test_sum(self):
|
|
d = torch.tensor([[0, 1, 2, 6], [3, 4, 5.0, 7]])
|
|
m = torch.tensor([[True, False, False, True], [False, True, False, True]])
|
|
mt = masked_tensor(d, m)
|
|
_compare_mts(masked_tensor(torch.tensor(17.0), torch.tensor(True)), mt.sum())
|
|
_compare_mts(
|
|
masked_tensor(
|
|
torch.tensor([0.0, 4.0, 1.0, 13]),
|
|
torch.tensor([True, True, False, True]),
|
|
),
|
|
mt.sum(dim=0),
|
|
)
|
|
|
|
def test_sum_grad(self):
|
|
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
|
|
m = torch.tensor([[True, False, False], [False, True, False]])
|
|
mt = masked_tensor(d, m, requires_grad=True)
|
|
mt.sum().backward()
|
|
_compare_mts(mt.grad, masked_tensor(torch.tensor(1.0).expand_as(m), m))
|
|
|
|
def test_mean(self):
|
|
d = torch.tensor([[0, 1, 3, 2], [3, 4, 1.0, 4]])
|
|
m = torch.tensor([[True, False, False, True], [False, True, False, True]])
|
|
mt = masked_tensor(d, m)
|
|
_compare_mts(masked_tensor(torch.tensor(2.5), torch.tensor(True)), mt.mean())
|
|
_compare_mts(
|
|
masked_tensor(
|
|
torch.tensor([0.0, 4.0, 1.0, 3]),
|
|
torch.tensor([True, True, False, True]),
|
|
),
|
|
mt.mean(dim=0),
|
|
)
|
|
|
|
"""
|
|
The following block of tests "test_mean_grad_case_1[a through e] are used to test the functionality of
|
|
the two different ways of constructing MaskedTensors:
|
|
masked_tensor(data, mask, requires_grad=True/False) -- NO differentiable constructor and always a leaf
|
|
as_masked_tensor(data, mask) -- differentiable constructor
|
|
|
|
Like torch.tensor(data), masked_tensor(data, mask) will provide a UserWarning if data.requires_grad=True
|
|
as_masked_tensor does not take in requires_grad -- it just takes on the requires_grad from data
|
|
|
|
Therefore, there are 6 cases to test and we use `mean` as a proxy to test the different combinations
|
|
|
|
Assuming mt.mean().backward() is run after each constructor:
|
|
|
|
Case 1a:
|
|
values.requires_grad = True
|
|
mt = masked_tensor(values, mask, requires_grad=True)
|
|
yields
|
|
- Provide a UserWarning because values.requires_grad=True
|
|
- values.grad = None
|
|
- mt.grad is a MaskedTensor with the correct gradient
|
|
|
|
Case 1b:
|
|
values.requires_grad = False
|
|
mt = masked_tensor(values, mask, requires_grad=True)
|
|
yields
|
|
- values.grad = None
|
|
- mt.grad is a MaskedTensor with the correct gradient
|
|
|
|
Case 2a/2b:
|
|
values.requires_grad = True/False
|
|
mt = masked_tensor(values, mask, requires_grad=False)
|
|
|
|
will both yield a RuntimeError of "element 0 of tensors does not require grad and does not have a grad_fn"
|
|
as expected. When values.requires_grad=True, we will also get a UserWarning
|
|
|
|
Case 3a:
|
|
values.requires_grad = True
|
|
mt = as_masked_tensor(values, mask)
|
|
yields
|
|
- values.grad is a MaskedTensor with the correct gradient
|
|
- mt.grad is None and gives a UserWarning that
|
|
"The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad"
|
|
|
|
Case 3b:
|
|
values.requires_grad = False
|
|
mt = as_masked_tensor(values, mask)
|
|
|
|
will yield a RuntimeError of "element 0 of tensors does not require grad and does not have a grad_fn"
|
|
as expected.
|
|
"""
|
|
def test_mean_grad_case_1a(self):
|
|
""" values.requires_grad = True
|
|
mt = masked_tensor(values, mask, requires_grad=True)
|
|
"""
|
|
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]], requires_grad=True)
|
|
m = torch.tensor([[True, False, False], [False, True, False]])
|
|
with self.assertWarnsRegex(UserWarning, "It is not recommended to create a MaskedTensor"):
|
|
mt = masked_tensor(d, m, requires_grad=True)
|
|
mt.mean().backward()
|
|
self.assertIsNone(d.grad)
|
|
_compare_mts(mt.grad, masked_tensor(torch.tensor([[0.5, 0, 0], [0, 0.5, 0]]), m))
|
|
|
|
def test_mean_grad_case_1b(self):
|
|
""" values.requires_grad = False
|
|
mt = masked_tensor(values, mask, requires_grad=True)
|
|
"""
|
|
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
|
|
m = torch.tensor([[True, False, False], [False, True, False]])
|
|
mt = masked_tensor(d, m, requires_grad=True)
|
|
mt.mean().backward()
|
|
self.assertIsNone(d.grad)
|
|
_compare_mts(mt.grad, masked_tensor(torch.tensor([[0.5, 0, 0], [0, 0.5, 0]]), m))
|
|
|
|
def test_mean_grad_case_1c(self):
|
|
""" values.requires_grad = True
|
|
mt = masked_tensor(values, mask, requires_grad=False)
|
|
"""
|
|
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]], requires_grad=True)
|
|
m = torch.tensor([[True, False, False], [False, True, False]])
|
|
with self.assertWarnsRegex(UserWarning, "It is not recommended to create a MaskedTensor"):
|
|
mt = masked_tensor(d, m, requires_grad=False)
|
|
result = mt.mean()
|
|
msg = "element 0 of tensors does not require grad and does not have a grad_fn"
|
|
with self.assertRaisesRegex(RuntimeError, msg):
|
|
result.backward()
|
|
|
|
|
|
def test_mean_grad_case_1d(self):
|
|
""" values.requires_grad = False
|
|
mt = masked_tensor(values, mask, requires_grad=False)
|
|
"""
|
|
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
|
|
m = torch.tensor([[True, False, False], [False, True, False]])
|
|
mt = masked_tensor(d, m, requires_grad=False)
|
|
result = mt.mean()
|
|
msg = "element 0 of tensors does not require grad and does not have a grad_fn"
|
|
with self.assertRaisesRegex(RuntimeError, msg):
|
|
result.backward()
|
|
|
|
def test_mean_grad_case_1e(self):
|
|
""" values.requires_grad = True
|
|
mt = as_masked_tensor(values, mask)
|
|
"""
|
|
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]], requires_grad=True)
|
|
m = torch.tensor([[True, False, False], [False, True, False]])
|
|
mt = as_masked_tensor(d, m)
|
|
mt.mean().backward()
|
|
_compare_mts(d.grad, masked_tensor(torch.tensor([[0.5, 0, 0], [0, 0.5, 0]]), m))
|
|
msg = "The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad"
|
|
with self.assertWarnsRegex(UserWarning, msg):
|
|
self.assertIsNone(mt.grad)
|
|
|
|
def test_mean_grad_case_1f(self):
|
|
""" values.requires_grad = False
|
|
mt = as_masked_tensor(values, mask)
|
|
"""
|
|
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
|
|
m = torch.tensor([[True, False, False], [False, True, False]])
|
|
mt = as_masked_tensor(d, m)
|
|
result = mt.mean()
|
|
msg = "element 0 of tensors does not require grad and does not have a grad_fn"
|
|
with self.assertRaisesRegex(RuntimeError, msg):
|
|
result.backward()
|
|
|
|
def test_mean_dim_grad(self):
|
|
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
|
|
m = torch.tensor([[True, True, False], [False, True, False]])
|
|
mt = masked_tensor(d, m, requires_grad=True)
|
|
mt.mean(1).sum().backward()
|
|
_compare_mts(mt.grad, masked_tensor(torch.tensor([[0.5, 0.5, 0], [0, 1, 0]]), m))
|
|
|
|
def test_amax(self):
|
|
d = torch.tensor([[0, 1, 3, -3], [3, -4, 1.0, 3]])
|
|
m = torch.tensor([[True, False, False, True], [False, True, False, True]])
|
|
mt = masked_tensor(d, m)
|
|
_compare_mts(masked_tensor(torch.tensor(3.0), torch.tensor(True)), mt.amax())
|
|
_compare_mts(
|
|
masked_tensor(
|
|
torch.tensor([0.0, -4.0, 1.0, 3]),
|
|
torch.tensor([True, True, False, True]),
|
|
),
|
|
mt.amax(dim=0),
|
|
)
|
|
|
|
def test_amax_grad(self):
|
|
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
|
|
m = torch.tensor([[True, False, False], [False, True, False]])
|
|
mt = masked_tensor(d, m, requires_grad=True)
|
|
mt.amax().backward()
|
|
_compare_mts(mt.grad, masked_tensor(torch.tensor([[0.0, 0, 0], [0, 1, 0]]), m))
|
|
|
|
def test_amin(self):
|
|
d = torch.tensor([[0, 1, 3, -3], [3, -4, 1.0, 3]])
|
|
m = torch.tensor([[True, False, False, True], [False, True, False, True]])
|
|
mt = masked_tensor(d, m)
|
|
_compare_mts(masked_tensor(torch.tensor(-4.0), torch.tensor(True)), mt.amin())
|
|
_compare_mts(
|
|
masked_tensor(
|
|
torch.tensor([0.0, -4.0, 1.0, -3]),
|
|
torch.tensor([True, True, False, True]),
|
|
),
|
|
mt.amin(dim=0),
|
|
)
|
|
|
|
def test_amin_grad(self):
|
|
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
|
|
m = torch.tensor([[True, False, False], [False, True, False]])
|
|
mt = masked_tensor(d, m, requires_grad=True)
|
|
mt.amin().backward()
|
|
_compare_mts(mt.grad, masked_tensor(torch.tensor([[1.0, 0, 0], [0, 0, 0]]), m))
|
|
|
|
def test_prod(self):
|
|
d = torch.tensor([[0, 1, 3, 0.0], [float("nan"), 4, 1.0, 5.0]])
|
|
m = torch.tensor([[True, False, False, True], [False, True, False, True]])
|
|
mt = masked_tensor(d, m)
|
|
_compare_mts(masked_tensor(torch.tensor(0.0), torch.tensor(True)), mt.prod())
|
|
_compare_mts(
|
|
masked_tensor(
|
|
torch.tensor([0.0, 4.0, 1.0, 0.0]),
|
|
torch.tensor([True, True, False, True]),
|
|
),
|
|
mt.prod(dim=0),
|
|
)
|
|
|
|
def test_prod_grad(self):
|
|
d = torch.tensor([[2, float("nan"), 2], [3, 4, 5.0]])
|
|
m = torch.tensor([[True, False, False], [False, True, False]])
|
|
mt = masked_tensor(d, m, requires_grad=True)
|
|
mt.prod().backward()
|
|
_compare_mts(mt.grad, masked_tensor(torch.tensor([[4.0, 0, 0], [0, 2, 0]]), m))
|
|
|
|
def test_all(self):
|
|
d = torch.tensor([[True, True, False, False], [False, True, True, True]])
|
|
m = torch.tensor([[True, False, False, True], [False, True, False, True]])
|
|
mt = masked_tensor(d, m)
|
|
_compare_mts(masked_tensor(torch.tensor(False), torch.tensor(True)), mt.all())
|
|
_compare_mts(
|
|
masked_tensor(
|
|
torch.tensor([True, True, True, False]),
|
|
torch.tensor([True, True, False, True]),
|
|
),
|
|
mt.all(dim=0),
|
|
)
|
|
|
|
m = torch.tensor([[True, False, True, False], [False, True, False, False]])
|
|
mt = masked_tensor(d, m)
|
|
_compare_mts(
|
|
masked_tensor(
|
|
torch.tensor([True, True, False, True]),
|
|
torch.tensor([True, True, True, False]),
|
|
),
|
|
mt.all(dim=0),
|
|
)
|
|
|
|
def test_grad_dtype(self):
|
|
d = torch.tensor([[True, True, False], [False, True, True]])
|
|
m = torch.tensor([[True, False, False], [False, True, False]])
|
|
msg = "Only Tensors of floating point and complex dtype can require gradients"
|
|
with self.assertRaisesRegex(RuntimeError, msg):
|
|
masked_tensor(d, m, requires_grad=True)
|
|
|
|
|
|
def is_unary(op):
|
|
return op.name in UNARY_NAMES
|
|
|
|
def is_binary(op):
|
|
return op.name in BINARY_NAMES
|
|
|
|
def is_reduction(op):
|
|
return op.name in REDUCE_NAMES and op.name not in {"all", "mean", "std", "var"}
|
|
|
|
mt_unary_ufuncs = [op for op in unary_ufuncs if is_unary(op)]
|
|
mt_binary_ufuncs = [op for op in binary_ufuncs if is_binary(op)]
|
|
mt_reduction_ufuncs = [op for op in reduction_ops if is_reduction(op)]
|
|
|
|
MASKEDTENSOR_FLOAT_TYPES = {
|
|
torch.float16,
|
|
torch.float32,
|
|
torch.float64,
|
|
}
|
|
|
|
class TestOperators(TestCase):
|
|
def _convert_mt_args(self, args, mask, layout):
|
|
return [
|
|
masked_tensor(
|
|
arg.sparse_mask(mask) if layout != torch.strided else arg, mask
|
|
)
|
|
if torch.is_tensor(arg)
|
|
else arg
|
|
for arg in args
|
|
]
|
|
|
|
def _test_unary_binary_equality(self, device, dtype, op, layout=torch.strided):
|
|
samples = op.sample_inputs(device, dtype, requires_grad=True)
|
|
|
|
for sample in samples:
|
|
input = sample.input
|
|
sample_args, sample_kwargs = sample.args, sample.kwargs
|
|
mask = (
|
|
_create_random_mask(input.shape, device)
|
|
if "mask" not in sample_kwargs
|
|
else sample_kwargs.pop("mask")
|
|
)
|
|
|
|
if layout == torch.sparse_coo:
|
|
mask = mask.to_sparse_coo().coalesce()
|
|
input = input.sparse_mask(mask)
|
|
elif layout == torch.sparse_csr:
|
|
if input.ndim != 2 or mask.ndim != 2:
|
|
continue
|
|
mask = mask.to_sparse_csr()
|
|
input = input.sparse_mask(mask)
|
|
|
|
# Binary operations currently only support same size masks
|
|
if is_binary(op):
|
|
if input.shape != sample_args[0].shape:
|
|
continue
|
|
# Binary operations also don't support kwargs right now
|
|
else:
|
|
sample_kwargs = {}
|
|
|
|
mt = masked_tensor(input, mask)
|
|
mt_args = self._convert_mt_args(sample_args, mask, layout)
|
|
|
|
mt_result = op(mt, *mt_args, **sample_kwargs)
|
|
t_result = op(sample.input, *sample_args, **sample_kwargs)
|
|
|
|
_compare_mt_t(mt_result, t_result)
|
|
|
|
# If the operation is binary, check that lhs = masked, rhs = regular tensor also works
|
|
if is_binary(op) and layout == torch.strided:
|
|
mt_result2 = op(mt, *sample_args, **sample_kwargs)
|
|
_compare_mt_t(mt_result2, t_result)
|
|
|
|
def _test_reduction_equality(self, device, dtype, op, layout=torch.strided):
|
|
samples = op.sample_inputs(device, dtype, requires_grad=True)
|
|
|
|
for sample in samples:
|
|
input = sample.input
|
|
# Reduction operations don't support more advanced args/kwargs right now
|
|
sample_args, sample_kwargs = (), {}
|
|
|
|
if input.dim() == 0 or input.numel() == 0:
|
|
continue
|
|
|
|
mask = _create_random_mask(input.shape, device)
|
|
|
|
if torch.count_nonzero(mask) == 0:
|
|
continue
|
|
|
|
tensor_input = _combine_input_and_mask(op.op, input, mask)
|
|
if layout == torch.sparse_coo:
|
|
mask = mask.to_sparse_coo().coalesce()
|
|
input = input.sparse_mask(mask)
|
|
elif layout == torch.sparse_csr:
|
|
if input.ndim != 2 or mask.ndim != 2:
|
|
continue
|
|
mask = mask.to_sparse_csr()
|
|
input = input.sparse_mask(mask)
|
|
|
|
mt = masked_tensor(input, mask)
|
|
mt_args = self._convert_mt_args(sample_args, mask, layout)
|
|
|
|
mt_result = op(mt, *mt_args, **sample_kwargs)
|
|
t_result = op(tensor_input, *sample_args, **sample_kwargs)
|
|
|
|
_compare_mt_t(mt_result, t_result)
|
|
|
|
@ops(mt_unary_ufuncs, allowed_dtypes=MASKEDTENSOR_FLOAT_TYPES) # type: ignore[arg-type]
|
|
@parametrize("layout", [torch.strided, torch.sparse_coo, torch.sparse_csr])
|
|
def test_unary_core(self, device, dtype, op, layout):
|
|
# Skip tests that don't have len(kwargs) == 0
|
|
skip_variants = {
|
|
"decimals_0",
|
|
"decimals_3",
|
|
"decimals_neg_3",
|
|
}
|
|
if op.name == "round" and op.variant_test_name in skip_variants:
|
|
return
|
|
self._test_unary_binary_equality(device, dtype, op)
|
|
|
|
@ops(mt_binary_ufuncs, allowed_dtypes=MASKEDTENSOR_FLOAT_TYPES) # type: ignore[arg-type]
|
|
@parametrize("layout", [torch.strided, torch.sparse_coo, torch.sparse_csr])
|
|
def test_binary_core(self, device, dtype, op, layout):
|
|
self._test_unary_binary_equality(device, dtype, op, layout)
|
|
|
|
@ops(mt_reduction_ufuncs, allowed_dtypes=MASKEDTENSOR_FLOAT_TYPES) # type: ignore[arg-type]
|
|
@parametrize("layout", [torch.strided, torch.sparse_coo, torch.sparse_csr])
|
|
def test_reduction_all(self, device, dtype, op, layout):
|
|
# argmin and argmax are not currently supported for torch.sparse_csr
|
|
if op.name in {"argmin", "argmax"} and layout == torch.sparse_csr:
|
|
return
|
|
|
|
self._test_reduction_equality(device, dtype, op, layout)
|
|
|
|
|
|
only_for = ("cpu", "cuda")
|
|
instantiate_device_type_tests(TestOperators, globals(), only_for=only_for)
|
|
|
|
instantiate_device_type_tests(TestBasics, globals(), only_for=only_for)
|
|
instantiate_parametrized_tests(TestUnary)
|
|
instantiate_parametrized_tests(TestBinary)
|
|
instantiate_parametrized_tests(TestReductions)
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|