mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105434 Approved by: https://github.com/albanD
109 lines
4.5 KiB
Python
109 lines
4.5 KiB
Python
# Owner(s): ["oncall: quantization"]
|
|
|
|
# torch
|
|
import torch
|
|
from torch.testing import FileCheck
|
|
from torch.testing._internal.common_quantization import QuantizationTestCase
|
|
|
|
class TestFusionPasses(QuantizationTestCase):
|
|
def test_quantized_add_relu_fusion(self):
|
|
class MAdd(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
a = torch.ops.quantized.add(x, y, 1., 0)
|
|
relu_out = torch.relu(a)
|
|
return relu_out
|
|
|
|
A = torch.arange(-128, 130, dtype=torch.float)
|
|
B = torch.arange(-128, 130, dtype=torch.float)
|
|
scale = 2.0
|
|
zero_point = 127
|
|
qA = torch.quantize_per_tensor(A, scale=scale, zero_point=zero_point,
|
|
dtype=torch.quint8)
|
|
qB = torch.quantize_per_tensor(B, scale=scale, zero_point=zero_point,
|
|
dtype=torch.quint8)
|
|
|
|
# Check quantized add + relu fusion
|
|
m = MAdd()
|
|
scripted_m = torch.jit.script(m)
|
|
ref_output = scripted_m(qA, qB)
|
|
|
|
# Must inline the graph.
|
|
# In this test case since we are directly calling ops
|
|
# it does not matter, however if we are calling nn
|
|
# modules we have to inline graph.
|
|
torch._C._jit_pass_inline(scripted_m.graph)
|
|
torch._C._jit_pass_fuse_quantized_add_relu(scripted_m.graph)
|
|
FileCheck().check_not("aten::relu") \
|
|
.check("quantized::add_relu") \
|
|
.run(scripted_m.graph)
|
|
output = scripted_m(qA, qB)
|
|
self.assertEqual(ref_output, output)
|
|
|
|
class MAddOut(torch.nn.Module):
|
|
def forward(self, x, y, z):
|
|
a = torch.ops.quantized.add_out(x, y, z)
|
|
relu_out = torch.relu(a)
|
|
return relu_out
|
|
|
|
qC = torch._empty_affine_quantized(qA.shape,
|
|
scale=scale,
|
|
zero_point=zero_point,
|
|
dtype=torch.quint8)
|
|
# Check quantized add + relu fusion
|
|
m = MAddOut()
|
|
scripted_m = torch.jit.script(m)
|
|
ref_output = scripted_m(qA, qB, qC)
|
|
# Must inline the graph.
|
|
# In this test case since we are directly calling ops
|
|
# it does not matter, however if we are calling nn
|
|
# modules we have to inline graph.
|
|
torch._C._jit_pass_inline(scripted_m.graph)
|
|
torch._C._jit_pass_fuse_quantized_add_relu(scripted_m.graph)
|
|
FileCheck().check_not("aten::relu") \
|
|
.check_not("quantized::add_out") \
|
|
.check("quantized::add_relu_out") \
|
|
.run(scripted_m.graph)
|
|
output = scripted_m(qA, qB, qC)
|
|
self.assertEqual(ref_output, output)
|
|
|
|
class MAddScalar(torch.nn.Module):
|
|
def forward(self, x, y : float):
|
|
a = torch.ops.quantized.add_scalar(x, y)
|
|
relu_out = torch.relu(a)
|
|
return relu_out
|
|
|
|
# Check quantized add + relu fusion
|
|
m = MAddScalar()
|
|
scripted_m = torch.jit.script(m)
|
|
ref_output = scripted_m(qA, 3.)
|
|
torch._C._jit_pass_inline(scripted_m.graph)
|
|
torch._C._jit_pass_fuse_quantized_add_relu(scripted_m.graph)
|
|
FileCheck().check_not("aten::relu") \
|
|
.check_not("quantized::add_scalar(") \
|
|
.check("quantized::add_scalar_relu") \
|
|
.run(scripted_m.graph)
|
|
output = scripted_m(qA, 3.)
|
|
self.assertEqual(ref_output, output)
|
|
|
|
class MAddScalarOut(torch.nn.Module):
|
|
def forward(self, x, y : float, z):
|
|
a = torch.ops.quantized.add_scalar_out(x, y, z)
|
|
relu_out = torch.relu(a)
|
|
return relu_out
|
|
|
|
qC = torch._empty_affine_quantized(qA.shape,
|
|
scale=scale,
|
|
zero_point=zero_point,
|
|
dtype=torch.quint8)
|
|
m = MAddScalarOut()
|
|
scripted_m = torch.jit.script(m)
|
|
ref_output = scripted_m(qA, 3., qC)
|
|
torch._C._jit_pass_inline(scripted_m.graph)
|
|
torch._C._jit_pass_fuse_quantized_add_relu(scripted_m.graph)
|
|
FileCheck().check_not("aten::relu") \
|
|
.check_not("quantized::add_scalar_out") \
|
|
.check("quantized::add_scalar_relu_out") \
|
|
.run(scripted_m.graph)
|
|
output = scripted_m(qA, 3., qC)
|
|
self.assertEqual(ref_output, output)
|