pytorch/test/quantization/eager/test_quantize_eager_ptq.py
Jiaxu Zhu 152203d3c3 [pytorch][ao] Add torch.matmul in FloatFunctional/QFunctional (#106831)
Summary: As title

Test Plan: new unit tests

Differential Revision: D48172841

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106831
Approved by: https://github.com/jerryzh168
2023-08-10 22:43:36 +00:00

1507 lines
60 KiB
Python

# Owner(s): ["oncall: quantization"]
import torch
import torch.nn as nn
import torch.ao.nn.quantized as nnq
from torch.nn.utils.rnn import PackedSequence
from torch.ao.quantization import (
quantize,
prepare,
convert,
prepare_qat,
quantize_dynamic,
QuantWrapper,
QuantStub,
DeQuantStub,
default_qconfig,
default_dynamic_qconfig,
per_channel_dynamic_qconfig,
float16_dynamic_qconfig,
float_qparams_weight_only_qconfig,
float_qparams_weight_only_qconfig_4bit,
FixedQParamsObserver,
PerChannelMinMaxObserver,
default_dynamic_quant_observer,
default_weight_observer,
QConfig,
)
from torch.testing._internal.common_quantization import (
QuantizationTestCase,
AnnotatedSingleLayerLinearModel,
QuantStubModel,
ModelWithFunctionals,
SingleLayerLinearDynamicModel,
TwoLayerLinearModel,
NestedModel,
ResNetBase,
RNNDynamicModel,
RNNCellDynamicModel,
ActivationsTestModel,
NormalizationTestModel,
test_only_eval_fn,
prepare_dynamic,
convert_dynamic,
skipIfNoFBGEMM,
EmbeddingBagModule,
EmbeddingModule,
EmbeddingWithStaticLinear,
LinearReluLinearModel,
)
# annotated models
from torch.testing._internal.common_quantization import (
AnnotatedTwoLayerLinearModel,
AnnotatedNestedModel,
AnnotatedSubNestedModel,
AnnotatedCustomConfigNestedModel,
AnnotatedSkipQuantModel,
)
from torch.testing._internal.common_quantized import (
override_quantized_engine,
supported_qengines,
override_qengines,
)
from hypothesis import given
from hypothesis import strategies as st
import torch.testing._internal.hypothesis_utils as hu
hu.assert_deadline_disabled()
# Standard library
from typing import Tuple
import numpy as np
class TestQuantizeEagerOps(QuantizationTestCase):
@override_qengines
def _test_reference_module_impl(self,
float_module_class,
quantized_module_class,
extra_module_kwargs,
input_size):
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = float_module_class(**extra_module_kwargs)
self.quant = QuantStub()
self.dequant = DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv(x)
x = self.dequant(x)
return x
class RefM(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = float_module_class(**extra_module_kwargs)
self.quant1 = QuantStub()
self.dequant1 = DeQuantStub()
self.quant2 = QuantStub()
self.dequant2 = DeQuantStub()
def forward(self, x):
x = self.quant1(x)
x = self.dequant1(x)
x = self.conv(x)
x = self.quant2(x)
x = self.dequant2(x)
return x
qengine = torch.backends.quantized.engine
if qengine not in supported_qengines or qengine == 'qnnpack':
return # qnnpack does not support nnq.ConvTranspose3d
data = torch.randn(*input_size, dtype=torch.float)
original_m = M()
original_ref_m = RefM()
original_ref_m.conv.weight = torch.nn.Parameter(original_m.conv.weight.detach())
original_ref_m.conv.bias = torch.nn.Parameter(original_m.conv.bias.detach())
original_m.qconfig = torch.ao.quantization.default_qconfig
m = prepare(original_m)
# calibration
m(data)
m = convert(m)
# check if the module is properly quantized
self.assertEqual(type(m.quant), nnq.Quantize)
self.assertEqual(type(m.conv), quantized_module_class)
self.assertEqual(type(m.dequant), nnq.DeQuantize)
res = m(data)
# quantize the reference model
original_ref_m.eval()
original_ref_m.qconfig = torch.ao.quantization.default_qconfig
ref_m = prepare(original_ref_m)
ref_m(data)
ref_m = convert(ref_m, is_reference=True)
ref_res = ref_m(data)
self.assertEqual(res, ref_res)
def test_conv_1d(self):
self._test_reference_module_impl(
nn.Conv1d,
nnq.Conv1d,
{'in_channels': 1, 'out_channels': 1, 'kernel_size': 1},
(16, 1, 1)
)
def test_conv_2d(self):
self._test_reference_module_impl(
nn.Conv2d,
nnq.Conv2d,
{'in_channels': 1, 'out_channels': 1, 'kernel_size': 1},
(16, 1, 10, 10)
)
def test_conv_3d(self):
self._test_reference_module_impl(
nn.Conv3d,
nnq.Conv3d,
{'in_channels': 1, 'out_channels': 1, 'kernel_size': 1},
(16, 1, 10, 10, 10)
)
def test_conv_transpose_1d(self):
self._test_reference_module_impl(
nn.ConvTranspose1d,
nnq.ConvTranspose1d,
{'in_channels': 1, 'out_channels': 1, 'kernel_size': 1},
(16, 1, 1)
)
def test_conv_transpose_2d(self):
self._test_reference_module_impl(
nn.ConvTranspose2d,
nnq.ConvTranspose2d,
{'in_channels': 1, 'out_channels': 1, 'kernel_size': 1},
(16, 1, 10, 10)
)
def test_conv_transpose_3d(self):
self._test_reference_module_impl(
nn.ConvTranspose3d,
nnq.ConvTranspose3d,
{'in_channels': 1, 'out_channels': 1, 'kernel_size': 1},
(16, 1, 10, 10, 10)
)
def test_linear(self):
self._test_reference_module_impl(
nn.Linear,
nnq.Linear,
{'in_features': 5, 'out_features': 10},
(16, 5)
)
@override_qengines
def test_int16_reference_module(self):
class RefM(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.ConvTranspose2d(1, 1, 1)
self.quant1 = QuantStub()
self.dequant1 = DeQuantStub()
self.quant2 = QuantStub()
self.dequant2 = DeQuantStub()
def forward(self, x):
x = self.quant1(x)
x = self.dequant1(x)
x = self.conv(x)
x = self.quant2(x)
x = self.dequant2(x)
return x
input_size = (16, 1, 10, 10)
data = torch.randn(*input_size, dtype=torch.float)
original_ref_m = RefM()
rand_w = torch.randn_like(original_ref_m.conv.weight)
rand_b = torch.randn_like(original_ref_m.conv.bias)
original_ref_m.conv.weight = torch.nn.Parameter(rand_w, requires_grad=False)
original_ref_m.conv.bias = torch.nn.Parameter(rand_b, requires_grad=False)
qengine = torch.backends.quantized.engine
if qengine not in supported_qengines:
return
from torch.ao.quantization.observer import MovingAverageMinMaxObserver
weight_obs = MovingAverageMinMaxObserver.with_args(
dtype=torch.qint32,
# set qmin and qmax to represent qint16
quant_min=-1 * (2 ** 15),
quant_max=(2 ** 15) - 1,
qscheme=torch.per_tensor_symmetric,
)
act_obs = MovingAverageMinMaxObserver.with_args(
dtype=torch.qint32,
quant_min=-1 * (2 ** 15),
quant_max=(2 ** 15) - 1,
)
custom_qconfig = QConfig(activation=act_obs, weight=weight_obs)
# quantize the reference model
original_ref_m.eval()
original_ref_m.qconfig = custom_qconfig
ref_m = prepare(original_ref_m)
# calibration
ref_m(torch.randn(*input_size, dtype=torch.float))
ref_m = convert(ref_m, is_reference=True)
myobs = MovingAverageMinMaxObserver(averaging_constant=0.5,
dtype=torch.qint32,
# set qmin and qmax to represent qint16
quant_min=-1 * (2 ** 15),
quant_max=(2 ** 15) - 1,
qscheme=torch.per_tensor_symmetric,
)
result = myobs(rand_w)
qparams = myobs.calculate_qparams()
self.assertEqual(ref_m.conv.weight_scale, qparams[0])
def _test_activation_op_impl(
self, float_module_class, quantized_module_class, extra_module_kwargs):
""" Implementation for testing common activation ops like leaky relu
Args:
extra_module_kwargs: keyword args to instantiate the float module
"""
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.activation_op = float_module_class(**extra_module_kwargs)
self.quant = QuantStub()
self.dequant = DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.activation_op(x)
x = self.dequant(x)
return x
m = M().eval()
m.qconfig = default_qconfig
m = prepare(m)
self.checkObservers(m)
m = convert(m)
self.assertEqual(type(m.activation_op), quantized_module_class)
def test_leaky_relu(self):
self._test_activation_op_impl(nn.LeakyReLU, nnq.LeakyReLU, {'negative_slope': 0.1, 'inplace': False})
def test_relu(self):
self._test_activation_op_impl(nn.ReLU, nn.ReLU, {'inplace': False})
# Histogram Observers are slow, so have no-deadline to ensure test doesn't time out
@given(train_mode=st.booleans())
def test_functional_module(self, train_mode):
model = ModelWithFunctionals()
x = torch.rand(10, 1, dtype=torch.float)
xq = torch.quantize_per_tensor(x, 0.01, 30, torch.quint8)
self.checkScriptable(model, [[x]], check_save_load=True)
if train_mode:
model.qconfig = torch.ao.quantization.get_default_qat_qconfig('fbgemm')
model = prepare_qat(model)
else:
model.qconfig = torch.ao.quantization.get_default_qconfig('qnnpack')
model = prepare(model)
# Check if observers and quant/dequant nodes are inserted
self.checkNoPrepModules(model)
self.checkObservers(model)
# Calibrate
model(xq.dequantize())
model = convert(model)
def checkQuantized(model):
self.checkNoPrepModules(model)
self.assertEqual(type(model.myadd), torch.ao.nn.quantized.QFunctional)
self.assertEqual(type(model.mycat), torch.ao.nn.quantized.QFunctional)
self.assertEqual(type(model.myadd_relu), torch.ao.nn.quantized.QFunctional)
self.assertEqual(type(model.mymatmul), torch.ao.nn.quantized.QFunctional)
self.checkNoQconfig(model)
checkQuantized(model)
self.checkScriptable(model, [[xq]], check_save_load=True)
class TestQuantizeEagerPTQStatic(QuantizationTestCase):
def test_single_layer(self):
r"""Quantize SingleLayerLinearModel which has one Linear module, make sure it is swapped
to nnq.Linear which is the quantized version of the module
"""
for qengine in supported_qengines:
with override_quantized_engine(qengine):
qconfig = torch.ao.quantization.get_default_qconfig(qengine)
model = AnnotatedSingleLayerLinearModel(qengine)
model.qconfig = qconfig
model = prepare(model)
# Check if observers and quant/dequant nodes are inserted
self.checkNoPrepModules(model)
self.checkHasPrepModules(model.fc1)
self.checkObservers(model)
test_only_eval_fn(model, self.calib_data)
model = convert(model)
def checkQuantized(model):
self.checkNoPrepModules(model)
self.checkHasPrepModules(model.fc1)
self.checkWrappedQuantizedLinear(model.fc1)
test_only_eval_fn(model, self.calib_data)
self.checkScriptable(model, self.calib_data)
self.checkNoQconfig(model)
checkQuantized(model)
# test one line API - out of place version
base = AnnotatedSingleLayerLinearModel(qengine)
base.qconfig = qconfig
keys_before = set(base.state_dict().keys())
model = quantize(base, test_only_eval_fn, [self.calib_data])
checkQuantized(model)
keys_after = set(base.state_dict().keys())
self.assertEqual(keys_before, keys_after) # simple check that nothing changed
# in-place version
model = AnnotatedSingleLayerLinearModel(qengine)
model.qconfig = qconfig
quantize(model, test_only_eval_fn, [self.calib_data], inplace=True)
checkQuantized(model)
@skipIfNoFBGEMM
def test_two_layers(self):
r"""TwoLayerLinearModel has two Linear modules but we only quantize the second one
`fc2`, and `fc1`is not quantized
"""
with override_quantized_engine('fbgemm'):
model = AnnotatedTwoLayerLinearModel()
model = prepare(model)
self.checkNoPrepModules(model)
self.checkObservers(model)
self.checkNoPrepModules(model.fc1)
self.checkHasPrepModules(model.fc2)
test_only_eval_fn(model, self.calib_data)
model = convert(model)
def checkQuantized(model):
self.checkNoPrepModules(model)
self.checkNoPrepModules(model.fc1)
self.checkHasPrepModules(model.fc2)
self.assertEqual(type(model.fc1), torch.nn.Linear)
self.checkWrappedQuantizedLinear(model.fc2)
test_only_eval_fn(model, self.calib_data)
self.checkScriptable(model, self.calib_data)
self.checkNoQconfig(model)
checkQuantized(model)
# test one line API
model = quantize(AnnotatedTwoLayerLinearModel(), test_only_eval_fn,
[self.calib_data])
checkQuantized(model)
def test_nested1(self):
r"""Test quantization for nested model, top level 'fc3' and
'fc1' of submodule 'sub2', 'sub2.fc2' is not quantized
"""
for qengine in supported_qengines:
with override_quantized_engine(qengine):
model = AnnotatedNestedModel(qengine)
def checkPrepModules(model, before_calib=False):
if before_calib:
self.checkObservers(model)
self.checkNoPrepModules(model)
self.checkNoPrepModules(model.sub1)
self.checkNoPrepModules(model.sub1.fc)
self.checkNoPrepModules(model.sub1.relu)
self.checkNoPrepModules(model.sub2)
self.checkHasPrepModules(model.sub2.fc1)
self.checkNoPrepModules(model.sub2.fc2)
self.checkHasPrepModules(model.fc3)
model = prepare(model)
checkPrepModules(model, True)
test_only_eval_fn(model, self.calib_data)
model = convert(model)
def checkQuantized(model):
checkPrepModules(model)
self.checkLinear(model.sub1.fc)
self.checkWrappedQuantizedLinear(model.fc3)
self.checkWrappedQuantizedLinear(model.sub2.fc1)
self.checkLinear(model.sub2.fc2)
test_only_eval_fn(model, self.calib_data)
self.checkScriptable(model, self.calib_data)
self.checkNoQconfig(model)
checkQuantized(model)
# test one line API
model = quantize(AnnotatedNestedModel(qengine), test_only_eval_fn,
[self.calib_data])
checkQuantized(model)
@skipIfNoFBGEMM
def test_nested2(self):
model = AnnotatedSubNestedModel()
model = prepare(model)
def checkPrepModules(model, before_calib=False):
if before_calib:
self.checkObservers(model)
self.checkNoPrepModules(model)
self.checkNoPrepModules(model.sub1)
self.checkNoPrepModules(model.sub1.fc)
self.checkNoPrepModules(model.sub1.relu)
self.checkHasPrepModules(model.sub2)
self.checkNoPrepModules(model.sub2.module.fc1)
self.checkNoPrepModules(model.sub2.module.fc2)
self.checkHasPrepModules(model.fc3)
checkPrepModules(model, True)
test_only_eval_fn(model, self.calib_data)
model = convert(model)
def checkQuantized(model):
checkPrepModules(model)
self.checkLinear(model.sub1.fc)
self.assertEqual(type(model.sub1.relu), torch.nn.ReLU)
self.checkQuantizedLinear(model.sub2.module.fc1)
self.checkQuantizedLinear(model.sub2.module.fc2)
self.checkWrappedQuantizedLinear(model.fc3)
test_only_eval_fn(model, self.calib_data)
self.checkScriptable(model, self.calib_data)
self.checkNoQconfig(model)
checkQuantized(model)
# test one line API
model = quantize(AnnotatedSubNestedModel(), test_only_eval_fn,
[self.calib_data])
checkQuantized(model)
def test_nested3(self):
r"""More complicated nested test case with child qconfig overrides
parent qconfig
"""
for qengine in supported_qengines:
with override_quantized_engine(qengine):
model = AnnotatedCustomConfigNestedModel()
model = prepare(model)
def checkPrepModules(model, before_calib=False):
if before_calib:
self.checkObservers(model)
self.checkNoPrepModules(model)
self.checkNoPrepModules(model.sub1)
self.checkNoPrepModules(model.sub1.fc)
self.checkNoPrepModules(model.sub1.relu)
self.checkNoPrepModules(model.sub2)
self.checkHasPrepModules(model.sub2.fc1)
self.checkHasPrepModules(model.sub2.fc2)
self.checkHasPrepModules(model.fc3)
checkPrepModules(model, True)
test_only_eval_fn(model, self.calib_data)
model = convert(model)
def checkQuantized(model):
checkPrepModules(model)
self.checkWrappedQuantizedLinear(model.sub2.fc1)
self.checkWrappedQuantizedLinear(model.sub2.fc2)
self.checkWrappedQuantizedLinear(model.fc3)
test_only_eval_fn(model, self.calib_data)
self.checkScriptable(model, self.calib_data)
self.checkNoQconfig(model)
checkQuantized(model)
# test one line API
model = quantize(AnnotatedCustomConfigNestedModel(), test_only_eval_fn,
[self.calib_data])
checkQuantized(model)
def test_skip_quant(self):
r"""The case when we want to skip quantizing some layers
"""
for qengine in supported_qengines:
with override_quantized_engine(qengine):
model = AnnotatedSkipQuantModel(qengine)
model = prepare(model)
self.checkObservers(model)
test_only_eval_fn(model, self.calib_data)
model = convert(model)
def checkQuantized(model):
self.checkLinear(model.fc)
self.checkQuantDequant(model.sub)
self.checkQuantizedLinear(model.sub.module.fc1)
self.checkQuantizedLinear(model.sub.module.fc2)
self.assertEqual(type(model.sub.module.relu1), nn.ReLU)
self.assertEqual(type(model.sub.module.relu2), nn.ReLU)
self.checkScriptable(model, self.calib_data)
self.checkNoQconfig(model)
checkQuantized(model)
# test one line API
model = quantize(AnnotatedSkipQuantModel(qengine), test_only_eval_fn, [self.calib_data])
checkQuantized(model)
@skipIfNoFBGEMM
def test_manual(self):
r"""User inserts QuantStub and DeQuantStub in model code
and call the quantization utility functions.
"""
model = QuantStubModel()
# propagate the qconfig of parents to children, model is changed
# inplace
model = prepare(model)
self.checkObservers(model)
test_only_eval_fn(model, self.calib_data)
model = convert(model)
def checkQuantized(model):
self.assertEqual(type(model.fc), nnq.Linear)
test_only_eval_fn(model, self.calib_data)
self.checkScriptable(model, self.calib_data)
self.checkNoQconfig(model)
checkQuantized(model)
# test one line API
model = quantize(QuantStubModel(), test_only_eval_fn, [self.calib_data])
checkQuantized(model)
def test_resnet_base(self):
r"""Test quantization for bottleneck topology used in resnet/resnext
and add coverage for conversion of average pool and float functional
"""
for qengine in supported_qengines:
with override_quantized_engine(qengine):
qconfig = torch.ao.quantization.get_default_qconfig(qengine)
model = ResNetBase().float().eval()
model.fuse_model()
model = QuantWrapper(model)
model.qconfig = qconfig
model = prepare(model)
self.checkObservers(model)
test_only_eval_fn(model, self.img_data_2d)
model = convert(model)
def checkQuantized(model):
self.assertEqual(type(model.module.conv1), nn.intrinsic.quantized.ConvReLU2d)
self.assertEqual(type(model.module.myop), nn.quantized.QFunctional)
self.assertEqual(type(model.module.avgpool), nn.AdaptiveAvgPool2d)
self.assertEqual(type(model.module.fc), nnq.Linear)
test_only_eval_fn(model, self.img_data_2d)
self.checkNoQconfig(model)
checkQuantized(model)
@skipIfNoFBGEMM
def test_normalization(self):
r"""
Test quantization of normalization layers
"""
model = NormalizationTestModel()
model.qconfig = torch.ao.quantization.get_default_qconfig('fbgemm')
prepare(model, inplace=True)
self.checkObservers(model)
test_only_eval_fn(model, self.calib_data)
model = convert(model)
def checkQuantized(model):
self.checkNoPrepModules(model.layer_norm)
self.checkNoPrepModules(model.group_norm)
self.checkNoPrepModules(model.instance_norm1d)
self.checkNoPrepModules(model.instance_norm2d)
self.checkNoPrepModules(model.instance_norm3d)
self.assertEqual(type(model.layer_norm), nnq.LayerNorm)
self.assertEqual(type(model.group_norm), nnq.GroupNorm)
self.assertEqual(type(model.instance_norm1d), nnq.InstanceNorm1d)
self.assertEqual(type(model.instance_norm2d), nnq.InstanceNorm2d)
self.assertEqual(type(model.instance_norm3d), nnq.InstanceNorm3d)
test_only_eval_fn(model, self.calib_data)
self.checkScriptable(model, self.calib_data)
self.checkNoQconfig(model)
checkQuantized(model)
model_oneline = quantize(
NormalizationTestModel(), test_only_eval_fn, [self.calib_data])
checkQuantized(model)
def test_save_load_state_dict(self):
r"""Test PTQ flow of creating a model and quantizing it and saving the quantized state_dict
Load the quantized state_dict for eval and compare results against original model
"""
for qengine in supported_qengines:
with override_quantized_engine(qengine):
model = TwoLayerLinearModel()
model = torch.ao.quantization.QuantWrapper(model)
model.qconfig = torch.ao.quantization.get_default_qconfig(qengine)
model = prepare(model)
# calibrate
test_only_eval_fn(model, self.calib_data)
model = convert(model)
x = torch.rand(2, 5, dtype=torch.float)
ref = model(x)
quant_state_dict = model.state_dict()
# Create model again for eval
model = TwoLayerLinearModel()
model = torch.ao.quantization.QuantWrapper(model)
model.qconfig = torch.ao.quantization.get_default_qconfig(qengine)
model = prepare(model)
model = convert(model)
new_state_dict = model.state_dict()
# Check to make sure the state dict keys match original model after convert.
self.assertEqual(set(new_state_dict.keys()), set(quant_state_dict.keys()))
model.load_state_dict(quant_state_dict)
out = model(x)
self.assertEqual(ref, out)
@skipIfNoFBGEMM
def test_activations(self):
r"""
Test quantization of activations
"""
model = ActivationsTestModel()
model.qconfig = torch.ao.quantization.get_default_qconfig('fbgemm')
prepare(model, inplace=True)
self.checkObservers(model)
test_only_eval_fn(model, self.calib_data)
model = convert(model)
def checkQuantized(model):
self.checkNoPrepModules(model.hardswish)
self.assertEqual(type(model.hardswish), nnq.Hardswish)
self.assertEqual(type(model.elu), nnq.ELU)
test_only_eval_fn(model, self.calib_data)
self.checkScriptable(model, self.calib_data)
self.checkNoQconfig(model)
checkQuantized(model)
# test one line API
model_oneline = quantize(ActivationsTestModel(), test_only_eval_fn,
[self.calib_data])
checkQuantized(model_oneline)
@override_qengines
def test_forward_hooks_preserved(self):
r"""Test post-training static quantization on preserving
pre forward and post forward hooks of original model
"""
qengine = torch.backends.quantized.engine
model = QuantStubModel()
counter = {
'pre_forwards': 0,
'forwards': 0,
}
def fw_pre_hook(h_module, input):
counter['pre_forwards'] += 1
def fw_hook(h_module, input, output):
counter['forwards'] += 1
model.fc.register_forward_pre_hook(fw_pre_hook)
model.fc.register_forward_hook(fw_hook)
model.qconfig = torch.ao.quantization.get_default_qconfig(qengine)
model = prepare(model)
def checkHooksIsPresent(model, before_convert=True):
num_fwd_hooks = 1
if before_convert:
self.assertEqual(len(model.quant._forward_hooks.values()), 1,
"Quantization observer hook has disappeared")
num_fwd_hooks = 2
self.assertObjectIn(fw_pre_hook, model.fc._forward_pre_hooks.values())
self.assertObjectIn(fw_hook, model.fc._forward_hooks.values())
self.assertEqual(len(model.fc._forward_pre_hooks.values()), 1,
"Extra pre forward hooks have appeared on a layer")
# During static quantization non stub layers are provided with quantization observer hook too
self.assertEqual(len(model.fc._forward_hooks.values()), num_fwd_hooks,
"Extra post forward hooks have appeared on a layer")
# Implicitly check that fw_hook goes after _observer_forward_hook
self.assertEqual(list(model.fc._forward_hooks.values())[-1], fw_hook,
"_observer_forward_hook is not a first entry of the hooks list")
checkHooksIsPresent(model, True)
test_only_eval_fn(model, self.calib_data)
torch.ao.quantization.convert(model, inplace=True)
checkHooksIsPresent(model, False)
@skipIfNoFBGEMM
def test_quantized_embedding(self):
r""" Test the post-training quantization flow, serialization and scripting
of embedding modules
"""
for qconfig in [float_qparams_weight_only_qconfig, float_qparams_weight_only_qconfig_4bit]:
model = EmbeddingModule().eval()
indices = torch.tensor([9, 6, 5, 7, 8, 8, 9, 2, 8, 6, 6, 9, 1, 6, 8, 8, 3, 2, 3, 6, 3, 6, 5, 7, 0, 8, 4, 6, 5, 8, 2, 3])
weights = torch.randn(10, 12, dtype=torch.float32)
model.qconfig = qconfig
prepare(model, inplace=True)
convert(model, inplace=True)
self.assertTrue('QuantizedEmbedding' in str(model))
self.assertEqual(type(model.emb), torch.ao.nn.quantized.Embedding)
self.checkScriptable(model, [[indices]], check_save_load=True)
idx = torch.LongTensor([1, 2, 4, 5, 4, 3, 2, 9])
offsets = torch.LongTensor([0, 4])
x = torch.randn(2, 4)
model = EmbeddingWithStaticLinear().eval()
prepare(model, inplace=True)
convert(model, inplace=True)
self.assertTrue('QuantizedEmbedding' in str(model))
self.assertTrue('QuantizedLinear' in str(model))
self.checkQuantizedLinear(model.fc)
model(idx, offsets, x)
@skipIfNoFBGEMM
def test_dequant_stub(self):
m = QuantStubModel().eval()
prepare(m, inplace=True)
self.checkObservers(m)
convert(m, inplace=True)
self.assertEqual(type(m.quant), nnq.Quantize)
self.assertEqual(type(m.fc), nnq.Linear)
self.assertEqual(type(m.dequant), nnq.DeQuantize)
# check DeQuantStub is not swapped when it doesn't have a qconfig
m2 = QuantStubModel().eval()
m2.dequant.qconfig = None
prepare(m2, inplace=True)
self.checkObservers(m2)
convert(m2, inplace=True)
self.assertEqual(type(m2.quant), nnq.Quantize)
self.assertEqual(type(m2.fc), nnq.Linear)
self.assertEqual(type(m2.dequant), DeQuantStub)
def test_quantized_embedding_bag(self):
r""" Test the post-training quantization flow, serialization and scripting
of embedding_bag modules
"""
indices = torch.tensor([9, 6, 5, 7, 8, 8, 9, 2, 8, 6, 6, 9, 1, 6, 8, 8, 3, 2, 3, 6, 3, 6, 5, 7, 0, 8, 4, 6, 5, 8, 2, 3])
offsets = torch.tensor([0, 19, 20, 28, 28, 32])
weights = torch.randn(10, 12, dtype=torch.float32)
for dtype in [torch.quint8, torch.quint4x2]:
model = EmbeddingBagModule().eval()
float_qparams_observer = PerChannelMinMaxObserver.with_args(dtype=dtype,
qscheme=torch.per_channel_affine_float_qparams,
ch_axis=0)
float_qparams_qconfig = QConfig(activation=default_dynamic_quant_observer,
weight=float_qparams_observer)
model.qconfig = float_qparams_qconfig
prepare(model, inplace=True)
quantized_model = convert(model)
per_sample_weights = torch.from_numpy(np.random.uniform(
low=0.01, high=0.5, size=[len(indices)]).astype(np.float32))
# Test to make sure module is quantized correctly.
self.assertTrue('QuantizedEmbeddingBag' in str(quantized_model))
self.checkDynamicQuantizedModule(quantized_model.emb, torch.ao.nn.quantized.EmbeddingBag, torch.quint8)
self.checkScriptable(quantized_model, [[indices, offsets, per_sample_weights]], check_save_load=True)
class EmbeddingBagWithLinear(torch.nn.Module):
def __init__(self):
super().__init__()
self.emb = torch.nn.EmbeddingBag(num_embeddings=10, embedding_dim=12,
include_last_offset=True, scale_grad_by_freq=False, mode='sum')
self.fc = torch.nn.Linear(5, 5)
def forward(self, indices, offsets, per_sample_weights, linear_in):
return self.emb(indices, offsets, per_sample_weights), self.fc(linear_in)
# Test quantization of embedding_bag layer only
model2 = EmbeddingBagWithLinear().eval()
model2.emb.qconfig = float_qparams_qconfig
prepare(model2, inplace=True)
quantized_model = convert(model2)
self.assertTrue('QuantizedEmbeddingBag' in str(quantized_model))
self.checkLinear(model2.fc)
self.checkDynamicQuantizedModule(quantized_model.emb, torch.ao.nn.quantized.EmbeddingBag, torch.quint8)
@skipIfNoFBGEMM
def test_custom_module_class(self):
class CustomModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(1, 1, 1)
def forward(self, x):
return self.conv(x)
class ObservedCustomModule(torch.nn.Module):
def __init__(self, conv):
super().__init__()
self.conv = conv
def forward(self, x):
return self.conv(x)
@classmethod
def from_float(cls, float_module):
assert hasattr(float_module, 'qconfig')
observed = cls(float_module.conv)
observed.qconfig = float_module.qconfig
return observed
class QuantizedCustomModule(torch.nn.Module):
def __init__(self, conv):
super().__init__()
self.conv = conv
def forward(self, x):
return self.conv(x)
@classmethod
def from_observed(cls, observed_module):
assert hasattr(observed_module, 'qconfig')
assert hasattr(observed_module, 'activation_post_process')
observed_module.conv.activation_post_process = \
observed_module.activation_post_process
quantized = cls(nnq.Conv2d.from_float(observed_module.conv))
return quantized
class Sub(torch.nn.Module):
def __init__(self):
super().__init__()
self.custom = CustomModule()
def forward(self, x):
return self.custom(x)
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.quant = QuantStub()
self.conv = torch.nn.Conv2d(1, 1, 1)
self.sub = Sub()
self.dequant = DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv(x)
x = self.sub(x)
x = self.dequant(x)
return x
class RefM(torch.nn.Module):
def __init__(self):
super().__init__()
self.quant = QuantStub()
self.conv1 = torch.nn.Conv2d(1, 1, 1)
self.conv2 = torch.nn.Conv2d(1, 1, 1)
self.dequant = DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv1(x)
x = self.conv2(x)
x = self.dequant(x)
return x
data = torch.randn(1, 1, 1, 1)
# instantiate M and RefM and align the parameters
original_m = M()
original_ref_m = RefM()
original_ref_m.conv1.weight = torch.nn.Parameter(original_m.conv.weight.detach())
original_ref_m.conv1.bias = torch.nn.Parameter(original_m.conv.bias.detach())
original_ref_m.conv2.weight = torch.nn.Parameter(original_m.sub.custom.conv.weight.detach())
original_ref_m.conv2.bias = torch.nn.Parameter(original_m.sub.custom.conv.bias.detach())
original_m.qconfig = default_qconfig
prepare_custom_config_dict = {
"float_to_observed_custom_module_class": {
CustomModule: ObservedCustomModule
}
}
convert_custom_config_dict = {
"observed_to_quantized_custom_module_class": {
ObservedCustomModule: QuantizedCustomModule
}
}
m = prepare(
original_m,
prepare_custom_config_dict=prepare_custom_config_dict)
self.checkObservers(m, None, prepare_custom_config_dict)
# calibration
m(data)
# all activation observers are inserted in the top level module
# check converted/quantized model
m = convert(
m,
convert_custom_config_dict=convert_custom_config_dict)
# check if the module is properly quantized
self.assertEqual(type(m.quant), nnq.Quantize)
self.assertEqual(type(m.conv), nnq.Conv2d)
self.assertEqual(type(m.sub), Sub)
self.assertEqual(type(m.sub.custom), QuantizedCustomModule)
self.assertEqual(type(m.sub.custom.conv), nnq.Conv2d)
self.assertEqual(type(m.dequant), nnq.DeQuantize)
res = m(data)
# quantize the reference model
original_ref_m.eval()
original_ref_m.qconfig = default_qconfig
ref_m = prepare(original_ref_m)
ref_m(data)
ref_m = convert(ref_m)
ref_res = ref_m(data)
self.assertEqual(res, ref_res)
@skipIfNoFBGEMM
def test_convtranspose_per_channel_fails_early(self):
r"""
Verifies that attempting to quantize a ConvTranspose module with per-Channel
weight observers fails in the prepare step, as opposed to the convert step.
"""
m = torch.nn.Sequential(torch.nn.ConvTranspose2d(1, 1, 1))
m.qconfig = torch.ao.quantization.get_default_qconfig('fbgemm')
with self.assertRaises(AssertionError) as context:
mp = torch.ao.quantization.prepare(m)
self.assertTrue(
str(context.exception) ==
'Per channel weight observer is not supported yet for ConvTranspose{n}d.')
@skipIfNoFBGEMM
def test_convtranspose_per_channel_qconfig_none(self):
r"""
Verifies that having qconfig==None for conv transpose does not crash
"""
m = torch.nn.Sequential(torch.nn.ConvTranspose2d(1, 1, 1))
m.qconfig = torch.ao.quantization.get_default_qconfig('fbgemm')
m[0].qconfig = None
mp = torch.ao.quantization.prepare(m)
@skipIfNoFBGEMM
def test_quantwrapper_attaches_qconfig_to_dequant(self):
qconfig = torch.ao.quantization.default_qconfig
m = nn.Sequential(nn.Conv2d(1, 1, 1)).eval()
for i in range(len(m)):
m[i].qconfig = qconfig
m[i] = torch.ao.quantization.QuantWrapper(m[i])
mp = torch.ao.quantization.prepare(m)
mq = torch.ao.quantization.convert(mp)
self.assertTrue(isinstance(mq[0].dequant, nnq.DeQuantize))
def test_activations_in_non_leaf_module_list(self):
"""
Ensure activations like `nn.Sigmoid` and `nn.Tanh` are properly handled in
`non_leaf_module_list`.
"""
class MyModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.quant = QuantStub()
self.sigmoid = torch.nn.Sigmoid()
self.hardsigmoid = torch.nn.Hardsigmoid()
self.softmax = torch.nn.Softmax()
self.tanh = torch.nn.Tanh()
self.dequant = DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.sigmoid(x)
x = self.hardsigmoid(x)
x = self.softmax(x)
x = self.tanh(x)
x = self.dequant(x)
return x
qconfig = QConfig(
activation=FixedQParamsObserver.with_args(scale=123.0, zero_point=0),
weight=default_weight_observer
)
m = MyModel()
m.qconfig = qconfig
m = prepare(m, observer_non_leaf_module_list=[
torch.nn.Sigmoid,
torch.nn.Hardsigmoid,
torch.nn.Softmax,
torch.nn.Tanh,
])
# Should use the observer specified in the QConfig instead of the default (FixedQParamsFakeQuantize)
self.assertTrue(isinstance(m.sigmoid.activation_post_process, FixedQParamsObserver))
self.assertTrue(isinstance(m.hardsigmoid.activation_post_process, FixedQParamsObserver))
self.assertTrue(isinstance(m.softmax.activation_post_process, FixedQParamsObserver))
self.assertTrue(isinstance(m.tanh.activation_post_process, FixedQParamsObserver))
@skipIfNoFBGEMM
def test_mha_batch_first_attr_is_copied_in_prepare(self):
class TransformerDecoderLayer(nn.Module):
def __init__(self, d_model, nhead, batch_first):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.1, batch_first=batch_first)
qengine = torch.backends.quantized.engine
for batch_first in [True, False]:
model = TransformerDecoderLayer(512, 8, batch_first)
quantization_config = torch.ao.quantization.get_default_qconfig(qengine)
model.qconfig = quantization_config
prepared_model = torch.ao.quantization.prepare(model, inplace=False)
self.assertTrue(prepared_model.self_attn.batch_first == model.self_attn.batch_first)
@skipIfNoFBGEMM
class TestQuantizeEagerPTQDynamic(QuantizationTestCase):
def test_single_layer(self):
r"""Dynamic Quantize SingleLayerLinearDynamicModel which has one Linear module,
make sure it is swapped to nnqd.Linear which is the quantized version of
the module
"""
for dtype in [torch.qint8, torch.float16]:
model = SingleLayerLinearDynamicModel().eval()
qconfig = float16_dynamic_qconfig if dtype == torch.float16 else default_dynamic_qconfig
qconfig_dict = {
'fc1': qconfig
}
prepare_dynamic(model, qconfig_dict)
convert_dynamic(model)
def checkQuantized(model):
self.checkDynamicQuantizedLinear(model.fc1, dtype)
self.checkScriptable(model, self.calib_data, check_save_load=True)
self.checkNoQconfig(model)
checkQuantized(model)
# test one line API - out of place version
base = SingleLayerLinearDynamicModel()
keys_before = set(base.state_dict().keys())
model = quantize_dynamic(base, qconfig_dict)
checkQuantized(model)
keys_after = set(base.state_dict().keys())
self.assertEqual(keys_before, keys_after) # simple check that nothing changed
# in-place version
model = SingleLayerLinearDynamicModel()
quantize_dynamic(model, qconfig_dict, inplace=True)
checkQuantized(model)
# Test set qconfig
model = SingleLayerLinearDynamicModel()
quantize_dynamic(model, {nn.Linear}, inplace=True, dtype=dtype)
checkQuantized(model)
def test_two_layers(self):
r"""TwoLayerLinearModel has two Linear modules but we only quantize the second one
`fc2`, and `fc1`is not quantized
"""
for dtype in [torch.qint8, torch.float16]:
model = TwoLayerLinearModel().eval()
qconfig = float16_dynamic_qconfig if dtype == torch.float16 else default_dynamic_qconfig
qconfig_dict = {
'fc2': qconfig
}
prepare_dynamic(model, qconfig_dict)
convert_dynamic(model)
def checkQuantized(model):
self.assertEqual(type(model.fc1), torch.nn.Linear)
self.checkDynamicQuantizedLinear(model.fc2, dtype=dtype)
self.checkScriptable(model, self.calib_data, check_save_load=True)
self.checkNoQconfig(model)
checkQuantized(model)
# test one line API
model = quantize_dynamic(TwoLayerLinearModel().eval(), qconfig_dict)
checkQuantized(model)
# Test set API
model = quantize_dynamic(TwoLayerLinearModel().eval(), {'fc2'}, dtype=dtype)
checkQuantized(model)
def test_nested1(self):
r"""Test quantization for nested model, top level 'fc3' and
'fc1' of submodule 'sub2', 'sub2.fc2' is not quantized
"""
for dtype in [torch.qint8, torch.float16]:
model = NestedModel().eval()
qconfig = float16_dynamic_qconfig if dtype == torch.float16 else default_dynamic_qconfig
qconfig_dict = {
'fc3': qconfig,
'sub2.fc1': qconfig
}
prepare_dynamic(model, qconfig_dict)
convert_dynamic(model)
def checkQuantized(model):
self.checkLinear(model.sub1.fc)
self.checkDynamicQuantizedLinear(model.fc3, dtype=dtype)
self.checkDynamicQuantizedLinear(model.sub2.fc1, dtype=dtype)
self.checkLinear(model.sub2.fc2)
self.checkScriptable(model, self.calib_data, check_save_load=True)
self.checkNoQconfig(model)
checkQuantized(model)
# test one line API
model = quantize_dynamic(NestedModel().eval(), qconfig_dict)
checkQuantized(model)
model = quantize_dynamic(NestedModel().eval(), {'fc3', 'sub2.fc1'}, dtype=dtype)
checkQuantized(model)
def test_nested2(self):
r"""Another test case for quantized, we will quantize all submodules
of submodule sub2
"""
for dtype in [torch.qint8, torch.float16]:
model = NestedModel().eval()
qconfig = float16_dynamic_qconfig if dtype == torch.float16 else default_dynamic_qconfig
qconfig_dict = {
'fc3': qconfig,
'sub2': qconfig
}
prepare_dynamic(model, qconfig_dict)
convert_dynamic(model)
def checkQuantized(model):
self.checkLinear(model.sub1.fc)
self.assertEqual(type(model.sub1.relu), torch.nn.ReLU)
self.checkDynamicQuantizedLinear(model.sub2.fc1, dtype=dtype)
self.checkDynamicQuantizedLinear(model.sub2.fc2, dtype=dtype)
self.checkDynamicQuantizedLinear(model.fc3, dtype=dtype)
self.checkScriptable(model, self.calib_data, check_save_load=True)
self.checkNoQconfig(model)
checkQuantized(model)
# test one line API
model = quantize_dynamic(NestedModel().eval(), qconfig_dict, dtype=dtype)
checkQuantized(model)
# Test set API
model = quantize_dynamic(NestedModel().eval(), {'fc3', 'sub2'}, dtype=dtype)
checkQuantized(model)
def test_nested3(self):
r"""More complicated nested test case with child qconfig overrides
parent qconfig
"""
for dtype in [torch.qint8, torch.float16]:
model = NestedModel().eval()
qconfig = float16_dynamic_qconfig if dtype == torch.float16 else default_dynamic_qconfig
qconfig_dynamic_dict = {
'fc3': qconfig,
'sub2': qconfig,
'sub2.fc1': qconfig
}
prepare_dynamic(model, qconfig_dynamic_dict)
convert_dynamic(model)
def checkQuantized(model):
self.checkDynamicQuantizedLinear(model.sub2.fc1, dtype=dtype)
self.checkDynamicQuantizedLinear(model.sub2.fc2, dtype=dtype)
self.checkDynamicQuantizedLinear(model.fc3, dtype=dtype)
self.checkScriptable(model, self.calib_data, check_save_load=True)
self.checkNoQconfig(model)
checkQuantized(model)
# test one line API
model = quantize_dynamic(NestedModel().eval(), qconfig_dynamic_dict)
checkQuantized(model)
# Test set API
model = quantize_dynamic(NestedModel().eval(), {'fc3', 'sub2', 'sub2.fc1'}, dtype=dtype)
checkQuantized(model)
def test_type_match_rule(self):
r"""Test quantization for nested model, top level 'fc3' and
'fc1' of submodule 'sub2', All 'torch.nn.Linear' modules are quantized
"""
for dtype in [torch.qint8, torch.float16]:
model = NestedModel().eval()
qconfig = float16_dynamic_qconfig if dtype == torch.float16 else default_dynamic_qconfig
qconfig_dict = {
'fc3': None,
'sub2.fc1': None,
torch.nn.Linear: qconfig
}
prepare_dynamic(model, qconfig_dict)
test_only_eval_fn(model, self.calib_data)
convert_dynamic(model)
def checkQuantized(model):
self.checkDynamicQuantizedLinear(model.sub1.fc, dtype=dtype)
self.checkLinear(model.fc3)
self.checkLinear(model.sub2.fc1)
self.checkDynamicQuantizedLinear(model.sub2.fc2, dtype=dtype)
test_only_eval_fn(model, self.calib_data)
self.checkScriptable(model, self.calib_data, check_save_load=True)
self.checkNoQconfig(model)
checkQuantized(model)
# test one line API
model = quantize_dynamic(NestedModel().eval(), qconfig_dict, dtype=dtype)
checkQuantized(model)
def test_per_channel_linear_quantize(self):
r"""Test quantization for per_channel dynamic quantization
"""
model = NestedModel().eval()
qconfig_dict = {
torch.nn.Linear: per_channel_dynamic_qconfig
}
prepare_dynamic(model, qconfig_dict)
test_only_eval_fn(model, self.calib_data)
convert_dynamic(model)
def checkQuantized(model):
self.checkDynamicQuantizedLinear(model.sub1.fc, dtype=torch.qint8)
self.checkDynamicQuantizedLinear(model.fc3, dtype=torch.qint8)
self.checkDynamicQuantizedLinear(model.sub2.fc1, dtype=torch.qint8)
self.checkDynamicQuantizedLinear(model.sub2.fc2, dtype=torch.qint8)
test_only_eval_fn(model, self.calib_data)
self.checkScriptable(model, self.calib_data, check_save_load=True)
self.checkNoQconfig(model)
checkQuantized(model)
# test one line API
model = quantize_dynamic(NestedModel().eval(), qconfig_dict)
checkQuantized(model)
def test_linear_relu_fusion(self):
dtype = torch.qint8
model = LinearReluLinearModel().eval()
qconfig = default_dynamic_qconfig
qconfig_dict = {'' : qconfig}
torch.ao.quantization.fuse_modules(model, [['fc1', 'relu']], inplace=True)
prepare_dynamic(model, qconfig_dict)
convert_dynamic(model)
def checkQuantized(model):
self.checkDynamicQuantizedLinearRelu(model.fc1, dtype)
self.checkDynamicQuantizedLinear(model.fc2, dtype)
self.checkScriptable(model, self.calib_data, check_save_load=True)
self.checkNoQconfig(model)
checkQuantized(model)
@given(qconfig=st.sampled_from([per_channel_dynamic_qconfig, default_dynamic_qconfig]),
dtype=st.sampled_from([torch.qint8, torch.float16]))
def test_quantized_rnn(self, qconfig, dtype):
r"""Test dynamic quantization, scriptability and serialization for dynamic quantized lstm modules on int8 and fp16
"""
niter = 10
x = torch.tensor([[100, -155],
[-155, 100],
[100, -155]], dtype=torch.float).unsqueeze(0).repeat(niter, 1, 1)
qconfig_dict = {
torch.nn.LSTM : qconfig,
torch.nn.GRU: qconfig
}
def checkQuantized(model, module_type):
mod_type_map = {'LSTM': torch.ao.nn.quantized.dynamic.LSTM,
'GRU': torch.ao.nn.quantized.dynamic.GRU}
mod_repr_map = {'LSTM': 'DynamicQuantizedLSTM',
'GRU': 'DynamicQuantizedGRU'}
self.assertTrue(mod_repr_map[module_type] in str(model_quantized))
self.checkDynamicQuantizedModule(model_quantized.mod, mod_type_map[module_type], dtype)
for module_type in ['LSTM', 'GRU']:
model = RNNDynamicModel(module_type).eval()
if dtype == torch.float16:
model_quantized = quantize_dynamic(model=model, dtype=dtype)
else:
model_quantized = quantize_dynamic(model=model, qconfig_spec=qconfig_dict, dtype=dtype)
checkQuantized(model_quantized, module_type)
self.checkScriptable(model_quantized, [[x]], check_save_load=True)
class ScriptWrapperPackedLSTM(torch.nn.Module):
def __init__(self, cell):
super().__init__()
self.cell = cell
def forward(self, x: PackedSequence) -> Tuple[PackedSequence, Tuple[torch.Tensor, torch.Tensor]]:
return self.cell(x)
class ScriptWrapperPackedGRU(torch.nn.Module):
def __init__(self, cell):
super().__init__()
self.cell = cell
def forward(self, x: PackedSequence) -> Tuple[PackedSequence, torch.Tensor]:
return self.cell(x)
script_wrapper_map = {'LSTM': ScriptWrapperPackedLSTM,
'GRU': ScriptWrapperPackedGRU}
packed_input = torch.nn.utils.rnn.pack_padded_sequence(x, torch.tensor([10, 5, 2]))
model_with_packed_input = script_wrapper_map[module_type](model_quantized.mod)
model_with_packed_input(packed_input)
scripted = torch.jit.script(model_with_packed_input)
scripted(packed_input)
# We cannot trace with input dtype being a packed sequence
self._checkScriptable(model_with_packed_input, scripted, [[packed_input]], True)
@given(qconfig=st.sampled_from([per_channel_dynamic_qconfig, default_dynamic_qconfig]),
dtype=st.sampled_from([torch.qint8, torch.float16]))
def test_quantized_rnn_cell(self, qconfig, dtype):
r"""Test dynamic quantization, scriptability and serialization for dynamic quantized rnn cell modules on int8 and fp16
"""
qconfig_dict = {
torch.nn.LSTMCell : qconfig,
torch.nn.GRUCell : qconfig,
torch.nn.RNNCell : qconfig
}
for module_type in ['LSTMCell', 'GRUCell', 'RNNTanh', 'RNNReLU']:
model = RNNCellDynamicModel(module_type).eval()
x = torch.tensor([[100, -155],
[-155, 100],
[100, -155]], dtype=torch.float)
if torch.backends.quantized.engine == 'qnnpack' and dtype == torch.float16:
continue
# fp16 dynamic quant is not supported for qnnpack
if dtype == torch.float16:
model_quantized = quantize_dynamic(model=model, dtype=dtype)
else:
model_quantized = quantize_dynamic(model=model, qconfig_spec=qconfig_dict, dtype=dtype)
def checkQuantized(model, module_type):
mod_type_map = {'LSTMCell': torch.ao.nn.quantized.dynamic.LSTMCell,
'GRUCell': torch.ao.nn.quantized.dynamic.GRUCell,
'RNNTanh': torch.ao.nn.quantized.dynamic.RNNCell,
'RNNReLU': torch.ao.nn.quantized.dynamic.RNNCell}
mod_repr_map = {'LSTMCell': 'DynamicQuantizedLSTMCell',
'GRUCell': 'DynamicQuantizedGRUCell',
'RNNTanh': 'DynamicQuantizedRNNCell',
'RNNReLU': 'DynamicQuantizedRNNCell'}
self.assertTrue(mod_repr_map[module_type] in str(model_quantized))
self.checkDynamicQuantizedModule(model_quantized.mod, mod_type_map[module_type], dtype)
self.checkNoQconfig(model)
# Smoke test extra reprs
checkQuantized(model_quantized, module_type)
self.checkScriptable(model_quantized, [[x]], check_save_load=True)
def test_forward_hooks_preserved(self):
r"""Test post-training dynamic quantization on preserving
pre forward and post forward hooks of original model
"""
for dtype in [torch.qint8, torch.float16]:
model = SingleLayerLinearDynamicModel().eval()
qconfig = float16_dynamic_qconfig if dtype == torch.float16 else default_dynamic_qconfig
qconfig_dict = {
'fc1': qconfig
}
convert_dynamic(model)
counter = {
'pre_forwards': 0,
'forwards': 0,
}
def fw_pre_hook(h_module, input):
counter['pre_forwards'] += 1
def fw_hook(h_module, input, output):
counter['forwards'] += 1
model.fc1.register_forward_pre_hook(fw_pre_hook)
model.fc1.register_forward_hook(fw_hook)
prepare_dynamic(model, qconfig_dict)
def checkHooksIsPresent(model):
self.assertObjectIn(fw_pre_hook, model.fc1._forward_pre_hooks.values())
self.assertObjectIn(fw_hook, model.fc1._forward_hooks.values())
self.assertEqual(len(model.fc1._forward_pre_hooks.values()), 1,
"Extra pre forward hooks have appeared on a layer")
self.assertEqual(len(model.fc1._forward_hooks.values()), 1,
"Extra post forward hooks have appeared on a layer")
checkHooksIsPresent(model)
test_only_eval_fn(model, self.calib_data)
convert_dynamic(model)
checkHooksIsPresent(model)
@skipIfNoFBGEMM
def test_embedding_ops_dynamic(self):
class EmbeddingBagWithLinear(torch.nn.Module):
def __init__(self):
super().__init__()
self.emb = torch.nn.EmbeddingBag(num_embeddings=10, embedding_dim=12,
include_last_offset=True, scale_grad_by_freq=False, mode='sum')
self.fc = torch.nn.Linear(5, 5)
def forward(self, indices, offsets, linear_in):
return self.emb(indices, offsets), self.fc(linear_in)
model = EmbeddingBagWithLinear().eval()
qconfig_dict = {
torch.nn.EmbeddingBag : float_qparams_weight_only_qconfig,
torch.nn.Linear: default_dynamic_qconfig
}
indices = torch.tensor([9, 6, 5, 7, 8, 8, 9, 2, 8, 6, 6, 9, 1, 6, 8, 8, 3, 2, 3, 6, 3, 6, 5, 7, 0, 8, 4, 6, 5, 8, 2, 3])
offsets = torch.tensor([0, 19, 20, 28, 28, 32])
q_model = quantize_dynamic(model, qconfig_dict)
q_model(indices, offsets, torch.randn(5, 5))
self.assertTrue('QuantizedEmbedding' in str(q_model))
self.assertTrue('DynamicQuantizedLinear' in str(q_model))
if __name__ == '__main__':
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_quantization.py TESTNAME\n\n"
"instead.")