mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
in order to add mps kernels to torchvision codebase, we need to expose mps headers and allow objc++ files used in extensions. Pull Request resolved: https://github.com/pytorch/pytorch/pull/102483 Approved by: https://github.com/malfet
76 lines
3.1 KiB
Plaintext
76 lines
3.1 KiB
Plaintext
#include <torch/extension.h>
|
|
#include <ATen/native/mps/OperationUtils.h>
|
|
|
|
// this sample custom kernel is taken from:
|
|
// https://developer.apple.com/documentation/metal/performing_calculations_on_a_gpu
|
|
static const char* CUSTOM_KERNEL = R"MPS_ADD_ARRAYS(
|
|
#include <metal_stdlib>
|
|
using namespace metal;
|
|
kernel void add_arrays(device const float* inA,
|
|
device const float* inB,
|
|
device float* result,
|
|
uint index [[thread_position_in_grid]])
|
|
{
|
|
result[index] = inA[index] + inB[index];
|
|
}
|
|
)MPS_ADD_ARRAYS";
|
|
|
|
at::Tensor get_cpu_add_output(at::Tensor & cpu_input1, at::Tensor & cpu_input2) {
|
|
return cpu_input1 + cpu_input2;
|
|
}
|
|
|
|
at::Tensor get_mps_add_output(at::Tensor & mps_input1, at::Tensor & mps_input2) {
|
|
|
|
// smoke tests
|
|
TORCH_CHECK(mps_input1.is_mps());
|
|
TORCH_CHECK(mps_input2.is_mps());
|
|
TORCH_CHECK(mps_input1.sizes() == mps_input2.sizes());
|
|
|
|
using namespace at::native::mps;
|
|
at::Tensor mps_output = at::empty_like(mps_input1);
|
|
|
|
@autoreleasepool {
|
|
id<MTLDevice> device = MPSDevice::getInstance()->device();
|
|
NSError *error = nil;
|
|
size_t numThreads = mps_output.numel();
|
|
id<MTLLibrary> customKernelLibrary = [device newLibraryWithSource: [NSString stringWithUTF8String:CUSTOM_KERNEL]
|
|
options: nil
|
|
error: &error];
|
|
TORCH_CHECK(customKernelLibrary, "Failed to to create custom kernel library, error: ", error.localizedDescription.UTF8String);
|
|
|
|
id<MTLFunction> customFunction = [customKernelLibrary newFunctionWithName: @"add_arrays"];
|
|
TORCH_CHECK(customFunction, "Failed to create function state object for the kernel");
|
|
|
|
id<MTLComputePipelineState> kernelPSO = [device newComputePipelineStateWithFunction: customFunction error: &error];
|
|
TORCH_CHECK(kernelPSO, error.localizedDescription.UTF8String);
|
|
|
|
MPSStream* mpsStream = getCurrentMPSStream();
|
|
|
|
dispatch_sync(mpsStream->queue(), ^() {
|
|
// Start a compute pass.
|
|
id<MTLComputeCommandEncoder> computeEncoder = mpsStream->commandEncoder();
|
|
TORCH_CHECK(computeEncoder, "Failed to create compute command encoder");
|
|
|
|
// Encode the pipeline state object and its parameters.
|
|
[computeEncoder setComputePipelineState: kernelPSO];
|
|
[computeEncoder setBuffer: getMTLBufferStorage(mps_input1) offset:0 atIndex:0];
|
|
[computeEncoder setBuffer: getMTLBufferStorage(mps_input2) offset:0 atIndex:1];
|
|
[computeEncoder setBuffer: getMTLBufferStorage(mps_output) offset:0 atIndex:2];
|
|
MTLSize gridSize = MTLSizeMake(numThreads, 1, 1);
|
|
|
|
// Calculate a thread group size.
|
|
NSUInteger threadsPerGroupSize = std::min(kernelPSO.maxTotalThreadsPerThreadgroup, numThreads);
|
|
MTLSize threadGroupSize = MTLSizeMake(threadsPerGroupSize, 1, 1);
|
|
|
|
// Encode the compute command.
|
|
[computeEncoder dispatchThreads: gridSize threadsPerThreadgroup: threadGroupSize];
|
|
|
|
});
|
|
}
|
|
return mps_output;
|
|
}
|
|
|
|
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
|
m.def("get_cpu_add_output", &get_cpu_add_output);
|
|
m.def("get_mps_add_output", &get_mps_add_output);
|
|
} |