mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
This updates ruff to 0.285 which is faster, better, and have fixes a bunch of false negatives with regards to fstrings. I also enabled RUF017 which looks for accidental quadratic list summation. Luckily, seems like there are no instances of it in our codebase, so enabling it so that it stays like that. :) Pull Request resolved: https://github.com/pytorch/pytorch/pull/107519 Approved by: https://github.com/ezyang
307 lines
13 KiB
Python
307 lines
13 KiB
Python
# The purpose of this test is to check that we have implementation parity between
|
|
# a Python `torch.nn` module and its corresponding C++ `torch::nn` module. Concretely,
|
|
# this test does the following:
|
|
#
|
|
# 1. Get a test params dict from common_nn.py, run forward and backward on the
|
|
# Python module created using the test params.
|
|
#
|
|
# 2. Serialize the Python module's parameters / buffers and its forward input
|
|
# arguments, deserialize them in C++ and load them into the C++ module.
|
|
#
|
|
# 3. Run the same forward and backward passes on the C++ module, and serialize
|
|
# the C++ module's forward output and backward gradients.
|
|
#
|
|
# 4. Compare Python/C++ module's forward output and backward gradients. If they
|
|
# are the same, then we have implementation parity between Python/C++ module.
|
|
|
|
import tempfile
|
|
from string import Template
|
|
import types
|
|
import pprint
|
|
import os
|
|
|
|
import torch
|
|
from cpp_api_parity.utils import TorchNNModuleTestParams, TORCH_NN_COMMON_TEST_HARNESS, \
|
|
compile_cpp_code_inline, set_python_tensors_requires_grad, move_python_tensors_to_device, \
|
|
add_test, compute_cpp_args_construction_stmts_and_forward_arg_symbols, serialize_arg_dict_as_script_module, \
|
|
compute_arg_dict, decorate_test_fn, compute_temp_file_path, generate_error_msg, is_torch_nn_functional_test, \
|
|
try_remove_folder
|
|
from cpp_api_parity.sample_module import SAMPLE_MODULE_CPP_SOURCE
|
|
|
|
# Expected substitutions:
|
|
#
|
|
# ${module_variant_name} (e.g. `Linear_no_bias_cpu`)
|
|
# ${module_qualified_name} (e.g. `torch::nn::Linear`)
|
|
# ${cpp_args_construction_stmts}
|
|
# ${cpp_constructor_args}
|
|
# ${device}
|
|
# ${cpp_forward_args_symbols}
|
|
TORCH_NN_MODULE_TEST_FORWARD_BACKWARD = Template("""
|
|
void ${module_variant_name}_test_forward_backward(
|
|
const std::string& arg_dict_file_path,
|
|
const std::string& module_file_path,
|
|
const std::string& forward_output_file_path,
|
|
const std::string& backward_grad_dict_file_path) {
|
|
pybind11::gil_scoped_release no_gil;
|
|
|
|
// Declare arguments
|
|
auto arg_dict = load_dict_from_file(arg_dict_file_path);
|
|
${cpp_args_construction_stmts};
|
|
|
|
// Construct module and load params/buffers from Python module
|
|
${module_qualified_name} module${cpp_constructor_args};
|
|
module->to(std::string("${device}"));
|
|
torch::load(module, module_file_path);
|
|
|
|
// Some modules (such as `RReLU`) create random tensors in their forward pass.
|
|
// To make sure the random tensors created are the same in Python/C++, we need
|
|
// to set the RNG seed manually.
|
|
torch::manual_seed(0);
|
|
|
|
// Forward pass
|
|
auto cpp_output = module(${cpp_forward_args_symbols});
|
|
|
|
// Save the output into a file to be compared in Python later
|
|
write_ivalue_to_file(torch::IValue(cpp_output), forward_output_file_path);
|
|
|
|
// Backward pass
|
|
if (cpp_output.is_complex()) {
|
|
cpp_output.sum().abs().backward();
|
|
} else {
|
|
cpp_output.sum().backward();
|
|
}
|
|
|
|
// Put all gradients into a c10::Dict, save it into a file to be compared in Python later
|
|
c10::Dict<std::string, torch::Tensor> grad_dict;
|
|
for (const auto& param : module->named_parameters()) {
|
|
torch::Tensor grad = param.value().grad();
|
|
if (grad.is_sparse()) {
|
|
grad_dict.insert(param.key() + "_grad_indices", grad.coalesce().indices());
|
|
grad_dict.insert(param.key() + "_grad_values", grad.coalesce().values());
|
|
} else {
|
|
grad_dict.insert(param.key() + "_grad", grad);
|
|
}
|
|
}
|
|
|
|
write_ivalue_to_file(torch::IValue(grad_dict), backward_grad_dict_file_path);
|
|
}
|
|
""")
|
|
|
|
def run_python_forward_backward(unit_test_class, test_params):
|
|
device = test_params.device
|
|
module = test_params.test_instance.constructor(*test_params.test_instance.constructor_args).to(device)
|
|
|
|
inputs = set_python_tensors_requires_grad(move_python_tensors_to_device(
|
|
[arg_value for _, arg_value in test_params.arg_dict['input']], device))
|
|
inputs += move_python_tensors_to_device(
|
|
[arg_value for _, arg_value in test_params.arg_dict['target']], device)
|
|
inputs += move_python_tensors_to_device(
|
|
[arg_value for _, arg_value in test_params.arg_dict['extra_args']], device)
|
|
|
|
# Some modules (such as `RReLU`) create random tensors in their forward pass.
|
|
# To make sure the random tensors created are the same in Python/C++, we need
|
|
# to set the RNG seed manually.
|
|
torch.manual_seed(0)
|
|
|
|
# Forward pass
|
|
python_output = module(*inputs)
|
|
|
|
# NOTE: This is a workaround to allow any module to be traced.
|
|
# We can do this because we are only interested in transferring
|
|
# the Python module's parameters and buffers to the C++ module.
|
|
module.forward = types.MethodType(lambda self, input: input, module)
|
|
script_module = torch.jit.trace(module, torch.tensor(0))
|
|
|
|
# Backward pass
|
|
if python_output.dtype.is_complex:
|
|
python_output.sum().abs().backward()
|
|
else:
|
|
python_output.sum().backward()
|
|
|
|
# Put all gradients into a dict, to be compared later
|
|
python_grad_dict = {}
|
|
for name, param in module.named_parameters():
|
|
grad = param.grad
|
|
if grad.is_sparse:
|
|
python_grad_dict[name + "_grad_indices"] = grad.coalesce().indices()
|
|
python_grad_dict[name + "_grad_values"] = grad.coalesce().values()
|
|
else:
|
|
python_grad_dict[name + "_grad"] = grad
|
|
|
|
return script_module, python_output, python_grad_dict
|
|
|
|
def test_forward_backward(unit_test_class, test_params):
|
|
module_variant_name = test_params.module_variant_name
|
|
cpp_tmp_folder = test_params.cpp_tmp_folder
|
|
# Remove the temporary folder if it exists already
|
|
try_remove_folder(cpp_tmp_folder)
|
|
os.mkdir(cpp_tmp_folder)
|
|
|
|
# Run forward and backward on Python module
|
|
script_module, python_output, python_grad_dict = run_python_forward_backward(unit_test_class, test_params)
|
|
|
|
# Save Python module and arguments to be used from C++ function
|
|
module_file_path = compute_temp_file_path(cpp_tmp_folder, module_variant_name, 'module')
|
|
arg_dict_file_path = compute_temp_file_path(cpp_tmp_folder, module_variant_name, 'arg_dict')
|
|
script_module.save(module_file_path)
|
|
serialize_arg_dict_as_script_module(test_params.arg_dict).save(arg_dict_file_path)
|
|
|
|
cpp_test_name = f'{test_params.module_variant_name}_test_forward_backward'
|
|
cpp_test_fn = getattr(unit_test_class.module_impl_check_cpp_module, cpp_test_name)
|
|
|
|
def run_cpp_test_fn_and_check_output():
|
|
forward_output_file_path = compute_temp_file_path(cpp_tmp_folder, module_variant_name, 'forward_output')
|
|
backward_grad_dict_file_path = compute_temp_file_path(cpp_tmp_folder, module_variant_name, 'backward_grad_dict')
|
|
|
|
cpp_test_fn(arg_dict_file_path, module_file_path, forward_output_file_path, backward_grad_dict_file_path)
|
|
cpp_output = torch.load(forward_output_file_path)
|
|
cpp_grad_dict = torch.load(backward_grad_dict_file_path)
|
|
|
|
# Check that forward outputs are equal
|
|
unit_test_class.assertEqual(python_output, cpp_output,
|
|
msg=generate_error_msg("forward output", cpp_output, python_output))
|
|
|
|
# Check that module parameter gradients are equal after backward pass
|
|
unit_test_class.assertEqual(
|
|
len(python_grad_dict), len(cpp_grad_dict),
|
|
msg=generate_error_msg("# of parameters", len(cpp_grad_dict), len(python_grad_dict)))
|
|
for key in python_grad_dict:
|
|
param_name = None
|
|
for suffix in ['_grad', '_grad_indices', '_grad_values']:
|
|
if key.endswith(suffix):
|
|
param_name = key[:-len(suffix)]
|
|
break
|
|
assert param_name is not None
|
|
sparsity_str = 'sparse' if key.endswith(('_grad_indices', '_grad_values')) else 'dense'
|
|
|
|
unit_test_class.assertTrue(
|
|
key in cpp_grad_dict,
|
|
msg=generate_error_msg(
|
|
f"\"Does module have a parameter named `{param_name}` with {sparsity_str} gradient?\"",
|
|
False, True))
|
|
unit_test_class.assertEqual(
|
|
python_grad_dict[key], cpp_grad_dict[key],
|
|
msg=generate_error_msg(
|
|
f"`{param_name}`'s {sparsity_str} gradient (`{key}`)",
|
|
cpp_grad_dict[key], python_grad_dict[key]))
|
|
|
|
run_cpp_test_fn_and_check_output()
|
|
|
|
# Remove temporary folder that stores C++ outputs
|
|
try_remove_folder(cpp_tmp_folder)
|
|
|
|
def compute_module_name(test_params_dict):
|
|
fullname = test_params_dict.get('fullname', None)
|
|
if fullname:
|
|
module_name = fullname.split('_')[0]
|
|
else:
|
|
module_name = test_params_dict.get('module_name')
|
|
return module_name
|
|
|
|
def process_test_params_for_module(test_params_dict, device, test_instance_class):
|
|
module_name = compute_module_name(test_params_dict)
|
|
test_params_dict['constructor'] = test_params_dict.get('constructor', getattr(torch.nn, module_name))
|
|
test_instance = test_instance_class(**test_params_dict)
|
|
assert test_instance.get_name().startswith('test_')
|
|
# Example output: `BCELoss_weights_cuda`
|
|
module_variant_name = test_instance.get_name()[5:] + (('_' + device) if device != 'cpu' else '')
|
|
|
|
if 'constructor_args' in test_params_dict:
|
|
assert 'cpp_constructor_args' in test_params_dict, (
|
|
"If `constructor_args` is present in test params dict, to enable C++ API parity test, "
|
|
f"`cpp_constructor_args` must be present in:\n{pprint.pformat(test_params_dict)}"
|
|
"If you are interested in adding the C++ API parity test, please see:\n"
|
|
"NOTE [How to check NN module / functional API parity between Python and C++ frontends]. \n"
|
|
"If not, please add `test_cpp_api_parity=False` to the test params dict and file an issue about this."
|
|
)
|
|
|
|
return TorchNNModuleTestParams(
|
|
module_name=module_name,
|
|
module_variant_name=module_variant_name,
|
|
test_instance=test_instance,
|
|
cpp_constructor_args=test_params_dict.get('cpp_constructor_args', ''),
|
|
arg_dict=compute_arg_dict(test_params_dict, test_instance),
|
|
has_parity=test_params_dict.get('has_parity', True),
|
|
device=device,
|
|
cpp_tmp_folder=tempfile.mkdtemp(),
|
|
)
|
|
|
|
def write_test_to_test_class(
|
|
unit_test_class, test_params_dict, test_instance_class, parity_table, devices):
|
|
assert not is_torch_nn_functional_test(test_params_dict)
|
|
|
|
module_name = compute_module_name(test_params_dict)
|
|
|
|
assert hasattr(torch.nn, module_name), (
|
|
f"`torch.nn` doesn't have module `{module_name}`. "
|
|
"If you are adding a new test, please set `fullname` using format `ModuleName_desc` "
|
|
f"or set `module_name` using format `ModuleName` in the module test dict:\n{pprint.pformat(test_params_dict)}"
|
|
)
|
|
|
|
module_full_name = 'torch::nn::' + module_name
|
|
|
|
assert module_full_name in parity_table['torch::nn'], (
|
|
f"Please add `{module_full_name}` entry to `torch::nn` section of `test/cpp_api_parity/parity-tracker.md`. "
|
|
f"(Discovered while processing\n{pprint.pformat(test_params_dict)}.)")
|
|
|
|
for device in devices:
|
|
test_params = process_test_params_for_module(
|
|
test_params_dict=test_params_dict,
|
|
device=device,
|
|
test_instance_class=test_instance_class,
|
|
)
|
|
try_remove_folder(test_params.cpp_tmp_folder)
|
|
unit_test_name = f'test_torch_nn_{test_params.module_variant_name}'
|
|
unit_test_class.module_test_params_map[unit_test_name] = test_params
|
|
|
|
def test_fn(self):
|
|
test_forward_backward(
|
|
unit_test_class=self, test_params=unit_test_class.module_test_params_map[self._testMethodName])
|
|
|
|
test_fn = decorate_test_fn(
|
|
test_fn=test_fn,
|
|
test_cuda=test_params_dict.get('test_cuda', True),
|
|
has_impl_parity=parity_table['torch::nn'][module_full_name][0] and
|
|
test_params_dict.get('has_parity', True),
|
|
device=device)
|
|
|
|
add_test(unit_test_class, unit_test_name, test_fn)
|
|
|
|
def generate_test_cpp_sources(test_params, template):
|
|
device = test_params.device
|
|
|
|
cpp_constructor_args = test_params.cpp_constructor_args
|
|
if cpp_constructor_args != '':
|
|
cpp_constructor_args = f'({cpp_constructor_args})'
|
|
|
|
cpp_args_construction_stmts, cpp_forward_args_symbols = \
|
|
compute_cpp_args_construction_stmts_and_forward_arg_symbols(test_params)
|
|
|
|
test_cpp_sources = template.substitute(
|
|
module_variant_name=test_params.module_variant_name,
|
|
module_qualified_name=f'torch::nn::{test_params.module_name}',
|
|
cpp_args_construction_stmts=";\n ".join(cpp_args_construction_stmts),
|
|
cpp_constructor_args=cpp_constructor_args,
|
|
cpp_forward_args_symbols=", ".join(cpp_forward_args_symbols),
|
|
device=device,
|
|
)
|
|
return test_cpp_sources
|
|
|
|
# Build all C++ tests together, instead of once per test.
|
|
def build_cpp_tests(unit_test_class, print_cpp_source=False):
|
|
assert len(unit_test_class.module_test_params_map) > 0
|
|
cpp_sources = TORCH_NN_COMMON_TEST_HARNESS + SAMPLE_MODULE_CPP_SOURCE
|
|
functions = []
|
|
for test_params in unit_test_class.module_test_params_map.values():
|
|
cpp_sources += generate_test_cpp_sources(
|
|
test_params=test_params, template=TORCH_NN_MODULE_TEST_FORWARD_BACKWARD)
|
|
functions.append(f'{test_params.module_variant_name}_test_forward_backward')
|
|
if print_cpp_source:
|
|
print(cpp_sources)
|
|
|
|
cpp_module = compile_cpp_code_inline(
|
|
name='module_impl_check',
|
|
cpp_sources=cpp_sources,
|
|
functions=functions)
|
|
unit_test_class.module_impl_check_cpp_module = cpp_module
|