pytorch/torch/csrc/autograd/init.cpp
Kimish Patel 1b04d99f55 [Pytorch Profiler] Introduce scopes to enableProfiler (#62417)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62417

This diff adds an option to make enableProfiler enable callbacks only
for certain RecordScopes.
Why?
Profiling has some overhead when we repeatedly execute callbacks for
alls copes. On mobile side when we often have small quantized models
this overhead can be large. We observed that by only profiling top level
op and skipping profiling of other atend ops called within we can limit
this overhead. For example, instead of profling at::conv2d -> at::convolution ->
at::convolution_ and further more if ops like transpose etc. are called,
skipping profiling of those. Of course this limits the visibility, but
at the least this way we get a choice.

Test Plan: Imported from OSS

Reviewed By: ilia-cher

Differential Revision: D29993659

fbshipit-source-id: 852d3ae7822f0d94dc6e507bd4019b60d488ef69
2021-08-13 21:40:15 -07:00

525 lines
17 KiB
C++

#include <torch/csrc/python_headers.h>
#include <c10/core/DeviceType.h>
#include <c10/core/InferenceMode.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/autograd/autograd.h>
#include <torch/csrc/autograd/grad_mode.h>
#include <ATen/autocast_mode.h>
#include <torch/csrc/autograd/profiler.h>
#include <torch/csrc/autograd/python_function.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/saved_variable.h>
#include <torch/csrc/autograd/python_saved_variable_hooks.h>
#include <torch/csrc/autograd/utils/wrap_outputs.h>
#include <torch/csrc/autograd/utils/python_arg_parsing.h>
#include <torch/csrc/utils/pycfunction_helpers.h>
#include <c10/core/ScalarType.h>
#include <set>
#include <unordered_set>
struct DisableTorchDispatch {
DisableTorchDispatch() : guard_(c10::DispatchKey::Python) {
}
c10::impl::ExcludeDispatchKeyGuard guard_;
};
PyObject* THPAutograd_initExtension(PyObject* _unused, PyObject *unused) {
using namespace torch::autograd::profiler;
auto tensor_module = THPObjectPtr(PyImport_ImportModule("torch._tensor"));
if (!tensor_module)
return nullptr;
// NOTE: "leaks" THPVariableClass
THPVariableClass = PyObject_GetAttrString(tensor_module, "Tensor");
if (!THPVariableClass)
return nullptr;
auto autograd_module = THPObjectPtr(PyImport_ImportModule("torch.autograd"));
if (!autograd_module)
return nullptr;
// NOTE: "leaks" Function
THPFunctionClass = PyObject_GetAttrString(autograd_module, "Function");
if (!THPFunctionClass)
return nullptr;
auto torch_C_module = THPObjectPtr(PyImport_ImportModule("torch._C"));
if (!torch_C_module)
return nullptr;
auto _C_m = py::handle(torch_C_module).cast<py::module>();
auto m = _C_m.def_submodule("_autograd", "autograd bindings");
auto parameter_module = THPObjectPtr(PyImport_ImportModule("torch.nn.parameter"));
if (!parameter_module)
return nullptr;
// NOTE: "leaks" ParameterClass
ParameterClass = PyObject_GetAttrString(parameter_module, "Parameter");
if (!ParameterClass)
return nullptr;
py::enum_<ProfilerState>(m, "ProfilerState")
.value("Disabled", ProfilerState::Disabled)
.value("CPU", ProfilerState::CPU)
.value("CUDA", ProfilerState::CUDA)
.value("NVTX", ProfilerState::NVTX)
.value("KINETO", ProfilerState::KINETO)
.value("KINETO_GPU_FALLBACK", ProfilerState::KINETO_GPU_FALLBACK);
py::enum_<ActivityType>(m, "ProfilerActivity")
.value("CPU", ActivityType::CPU)
.value("CUDA", ActivityType::CUDA);
py::class_<ProfilerConfig>(m, "ProfilerConfig")
.def(py::init<ProfilerState,
bool, /* record_input_shapes */
bool, /* profile_memory */
bool, /* with_stac k*/
bool, /* with_flops */
bool /* with_modules */
>());
py::class_<LegacyEvent>(m, "ProfilerEvent")
.def("kind", &LegacyEvent::kindStr)
.def("name", [](const LegacyEvent& e) { return e.name(); })
.def("thread_id", &LegacyEvent::threadId)
.def("fwd_thread_id", &LegacyEvent::fwdThreadId)
.def("device", &LegacyEvent::device)
.def("cpu_elapsed_us", &LegacyEvent::cpuElapsedUs)
.def("cuda_elapsed_us", &LegacyEvent::cudaElapsedUs)
.def("has_cuda", &LegacyEvent::hasCuda)
.def("shapes", &LegacyEvent::shapes)
.def("cpu_memory_usage", &LegacyEvent::cpuMemoryUsage)
.def("cuda_memory_usage", &LegacyEvent::cudaMemoryUsage)
.def("handle", &LegacyEvent::handle)
.def("node_id", &LegacyEvent::nodeId)
.def("is_remote", &LegacyEvent::isRemote)
.def("sequence_nr", &LegacyEvent::sequenceNr)
.def("stack", &LegacyEvent::stack)
.def("scope", &LegacyEvent::scope)
.def("correlation_id", &LegacyEvent::correlationId)
.def("start_us", &LegacyEvent::cpuUs)
.def("flops", &LegacyEvent::flops)
.def("is_async", &LegacyEvent::isAsync);
py::enum_<c10::DeviceType>(m, "DeviceType")
.value("CPU", c10::DeviceType::CPU)
.value("CUDA", c10::DeviceType::CUDA)
.value("MKLDNN", c10::DeviceType::MKLDNN)
.value("OPENGL", c10::DeviceType::OPENGL)
.value("OPENCL", c10::DeviceType::OPENCL)
.value("IDEEP", c10::DeviceType::IDEEP)
.value("HIP", c10::DeviceType::HIP)
.value("FPGA", c10::DeviceType::FPGA)
.value("MSNPU", c10::DeviceType::MSNPU)
.value("XLA", c10::DeviceType::XLA)
.value("Lazy", c10::DeviceType::Lazy)
.value("MLC", c10::DeviceType::MLC)
.value("HPU", c10::DeviceType::HPU)
.value("Meta", c10::DeviceType::Meta)
.value("Vulkan", c10::DeviceType::Vulkan)
.value("Metal", c10::DeviceType::Metal);
py::class_<KinetoEvent>(m, "_KinetoEvent")
// name of the event
.def("name", [](const KinetoEvent& e) {
return e.name();
})
// PyTorch thread id of the start callback
.def("start_thread_id", [](const KinetoEvent& e) {
return e.startThreadId();
})
// PyTorch thread id of the end callback
.def("end_thread_id", [](const KinetoEvent& e) {
return e.endThreadId();
})
// for events of scope BACKWARD_FUNCTION - PyTorch thread id
// of the corresponding forward op
.def("fwd_thread_id", [](const KinetoEvent& e) {
return e.fwdThreadId();
})
// together with fwd_thread_id, used to uniquely identify
// the forward op
.def("sequence_nr", [](const KinetoEvent& e) {
return e.sequenceNr();
})
// absolute start time (since unix epoch) in us
.def("start_us", [](const KinetoEvent& e) {
return e.startUs();
})
// duration in us
.def("duration_us", [](const KinetoEvent& e) {
return e.durationUs();
})
// used for correlation between high-level PyTorch events
// and low-level device events
.def("correlation_id", [](const KinetoEvent& e) {
return e.correlationId();
})
// shapes of input tensors
.def("shapes", [](const KinetoEvent& e) {
if (e.hasShapes()) {
return e.shapes();
} else {
return std::vector<std::vector<int64_t>>();
}
})
.def("dtypes", [](const KinetoEvent& e) {
if (e.hasTypes()) {
return e.dtypes();
} else {
return std::vector<std::string>();
}
})
// stack traces of the PyTorch CPU events
.def("stack", [](const KinetoEvent& e) {
if (e.hasStack()) {
return e.stack();
} else {
return std::vector<std::string>();
}
})
// type of the RecordFunction that generated a PyTorch CPU event
// (op, torchscript function, user label, etc)
.def("scope", [](const KinetoEvent& e) {
return e.scope();
})
// device number, for CPU - process id
.def("device_index", [](const KinetoEvent& e) {
return e.deviceIndex();
})
// for CUDA - stream id, for CPU - start thread id
.def("device_resource_id", [](const KinetoEvent& e) {
return e.deviceResourceId();
})
// device type
.def("device_type", [](const KinetoEvent& e) {
return e.deviceType();
})
// correlation id of a linked event
.def("linked_correlation_id", [](const KinetoEvent& e) {
return e.linkedCorrelationId();
})
// compute flops
.def("flops", [](const KinetoEvent& e) {
return e.flops();
})
// Whether this is async event or not
.def("is_async", [](const KinetoEvent& e) {
return e.isAsync();
})
.def("cuda_elapsed_us", &KinetoEvent::cudaElapsedUs)
.def("nbytes", [](const KinetoEvent& e) {
return e.nBytes();
});
py::class_<ProfilerResult>(m, "_ProfilerResult")
.def("trace_start_us", &ProfilerResult::trace_start_us)
.def("events", &ProfilerResult::events)
#ifdef USE_KINETO
.def("save", &ProfilerResult::save)
#endif // USE_KINETO
;
m.def("_enable_profiler",
&enableProfiler,
py::arg("config"),
py::arg("activities"),
py::arg("scopes") = std::unordered_set<at::RecordScope>());
m.def("_disable_profiler", disableProfiler);
m.def("_prepare_profiler", prepareProfiler);
m.def("_add_metadata_json", [](const std::string& key, const std::string& value) {
#ifdef USE_KINETO
addMetadataJson(key, value);
#else
LOG(WARNING) << "Adding profiling metadata requires using "
<< "torch.profiler with Kineto support (USE_KINETO=1)";
#endif // USE_KINETO
});
m.def("kineto_available", []() {
#ifdef USE_KINETO
return true;
#else
return false;
#endif
});
m.def("_supported_activities", []() {
std::set<ActivityType> activities {ActivityType::CPU};
#if defined(USE_KINETO) && !defined(LIBKINETO_NOCUPTI)
if (at::getNumGPUs() > 0 && !at::hasHIP()) {
activities.insert(ActivityType::CUDA);
}
#endif
return activities;
});
m.def("_enable_profiler_legacy", enableProfilerLegacy);
py::class_<ProfilerDisableOptions>(m, "_ProfilerDisableOptions")
.def(py::init<bool, bool>());
m.def(
"_disable_profiler_legacy",
disableProfilerLegacy,
py::arg("profiler_disable_options") = ProfilerDisableOptions());
m.def("_profiler_enabled", profilerEnabled);
m.def("_enable_record_function", [](bool enable) {
at::enableRecordFunction(enable);
});
m.def("_set_empty_test_observer", [](bool is_global, double sampling_prob) {
auto cb = at::RecordFunctionCallback(nullptr)
.needsInputs(true)
.samplingProb(sampling_prob);
if (is_global) {
at::addGlobalCallback(cb);
} else {
at::addThreadLocalCallback(cb);
}
});
m.def("_clear_callbacks", []() {
at::clearCallbacks();
});
m.def("_register_saved_tensors_default_hooks", [](py::function &pack_hook, py::function &unpack_hook) {
torch::autograd::PyDefaultSavedVariableHooks::set_hooks(pack_hook, unpack_hook);
});
m.def("_reset_saved_tensors_default_hooks", []() {
torch::autograd::PyDefaultSavedVariableHooks::reset_hooks();
});
py::class_<c10::InferenceMode>(_C_m, "_InferenceMode")
.def(py::init<bool>());
py::class_<DisableTorchDispatch>(_C_m, "_DisableTorchDispatch")
.def(py::init<>());
py::class_<torch::autograd::SavedVariable>(m, "SavedTensor")
.def(py::init([]()->torch::autograd::SavedVariable {
TORCH_CHECK(false, "Trying to create a SavedTensor object from Python is forbidden.");
}))
.def("register_hooks", [](torch::autograd::SavedVariable &s, py::function &pack_hook, py::function &unpack_hook) {
// Because we use a py::object, pybind will increment the refcount of the hook functions for us
s.register_hooks(std::make_unique<torch::autograd::PySavedVariableHooks>(pack_hook, unpack_hook));
});
Py_RETURN_TRUE;
}
namespace torch { namespace autograd {
static PyObject * set_autocast_enabled(PyObject* _unused, PyObject *arg) {
HANDLE_TH_ERRORS
if (!PyBool_Check(arg)) {
throw TypeError("enabled must be a bool (got %s)", Py_TYPE(arg)->tp_name);
}
at::autocast::set_enabled(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * is_autocast_enabled(PyObject* _unused, PyObject *arg) {
HANDLE_TH_ERRORS
if (at::autocast::is_enabled()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
static PyObject * set_autocast_cpu_enabled(PyObject* _unused, PyObject *arg) {
HANDLE_TH_ERRORS
if (!PyBool_Check(arg)) {
throw TypeError("enabled must be a bool (got %s)", Py_TYPE(arg)->tp_name);
}
at::autocast::set_cpu_enabled(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * is_autocast_cpu_enabled(PyObject* _unused, PyObject *arg) {
HANDLE_TH_ERRORS
if (at::autocast::is_cpu_enabled()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
static PyObject * set_autocast_gpu_dtype(PyObject* _unused, PyObject *arg) {
HANDLE_TH_ERRORS
if (!THPDtype_Check(arg)) {
throw TypeError(
"dtype must be a torch.dtype (got %s)", Py_TYPE(arg)->tp_name);
}
at::ScalarType targetType = reinterpret_cast<THPDtype*>(arg)->scalar_type;
at::autocast::set_autocast_gpu_dtype(targetType);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * set_autocast_cpu_dtype(PyObject* _unused, PyObject *arg) {
HANDLE_TH_ERRORS
if (!THPDtype_Check(arg)) {
throw TypeError(
"dtype must be a torch.dtype (got %s)", Py_TYPE(arg)->tp_name);
}
at::ScalarType targetType = reinterpret_cast<THPDtype*>(arg)->scalar_type;
at::autocast::set_autocast_cpu_dtype(targetType);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static const char* scalarTypeName(const at::ScalarType type) {
switch (type) {
#define DEFINE_CASE(ctype, name) \
case at::ScalarType::name: \
return #ctype;
AT_FORAUTOCAST_SCALAR_TYPES(DEFINE_CASE)
#undef DEFINE_CASE
default:
throw std::runtime_error("unknown scalar type for autocast");
}
}
static PyObject * get_autocast_gpu_dtype(PyObject* _unused, PyObject *arg){
HANDLE_TH_ERRORS
at::ScalarType current_dtype = at::autocast::get_autocast_gpu_dtype();
return THPDtype_New(current_dtype, scalarTypeName(current_dtype));
END_HANDLE_TH_ERRORS
}
static PyObject * get_autocast_cpu_dtype(PyObject* _unused, PyObject *arg){
HANDLE_TH_ERRORS
at::ScalarType current_dtype = at::autocast::get_autocast_cpu_dtype();
return THPDtype_New(current_dtype, scalarTypeName(current_dtype));
END_HANDLE_TH_ERRORS
}
static PyObject * clear_autocast_cache(PyObject* _unused, PyObject *arg) {
HANDLE_TH_ERRORS
at::autocast::clear_cache();
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * autocast_increment_nesting(PyObject* _unused, PyObject *arg) {
HANDLE_TH_ERRORS
return THPUtils_packInt64(at::autocast::increment_nesting());
END_HANDLE_TH_ERRORS
}
static PyObject * autocast_decrement_nesting(PyObject* _unused, PyObject *arg) {
HANDLE_TH_ERRORS
return THPUtils_packInt64(at::autocast::decrement_nesting());
END_HANDLE_TH_ERRORS
}
static PyObject * set_grad_enabled(PyObject* _unused, PyObject *arg) {
HANDLE_TH_ERRORS
if (!PyBool_Check(arg)) {
throw TypeError("enabled must be a bool (got %s)", Py_TYPE(arg)->tp_name);
}
GradMode::set_enabled(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * is_grad_enabled(PyObject* _unused, PyObject *arg) {
HANDLE_TH_ERRORS
if (GradMode::is_enabled()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
static PyObject * is_inference_mode_enabled(PyObject* _unused, PyObject *arg) {
HANDLE_TH_ERRORS
if (c10::InferenceMode::is_enabled()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
static PyObject * set_anomaly_mode_enabled(PyObject* _unused, PyObject *arg) {
HANDLE_TH_ERRORS
if (!PyBool_Check(arg)) {
throw TypeError("enabled must be a bool (got %s)", Py_TYPE(arg)->tp_name);
}
AnomalyMode::set_enabled(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * is_anomaly_mode_enabled(PyObject* _unused, PyObject *arg) {
HANDLE_TH_ERRORS
if (AnomalyMode::is_enabled()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
static PyObject * python_enter_dual_level(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
// It is unlikely that the depth of forward nesting will overflow int64_t so we
// just static cast here.
return utils::wrap(static_cast<int64_t>(forward_ad::enter_dual_level()));
END_HANDLE_TH_ERRORS
}
static PyObject * python_exit_dual_level(PyObject* _unused, PyObject* args, PyObject* kwargs) {
HANDLE_TH_ERRORS
static PythonArgParser parser({
"exit_dual_level(int64_t level)"
});
ParsedArgs<1> parsed_args;
auto _r = parser.parse(args, kwargs, parsed_args);
auto idx = _r.toInt64(0);
// Make sure the given index is valid before casting it
TORCH_CHECK(idx >= 0, "Dual level must be a positive number.");
forward_ad::exit_dual_level(static_cast<uint64_t>(idx));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
// autograd methods on torch._C
static PyMethodDef methods[] = { // NOLINT
{"_set_grad_enabled", set_grad_enabled, METH_O, nullptr},
{"is_grad_enabled", is_grad_enabled, METH_NOARGS, nullptr},
{"is_inference_mode_enabled", is_inference_mode_enabled, METH_NOARGS, nullptr},
{"set_autocast_enabled", set_autocast_enabled, METH_O, nullptr},
{"is_autocast_enabled", is_autocast_enabled, METH_NOARGS, nullptr},
{"clear_autocast_cache", clear_autocast_cache, METH_NOARGS, nullptr},
{"set_autocast_cpu_enabled", set_autocast_cpu_enabled, METH_O, nullptr},
{"is_autocast_cpu_enabled", is_autocast_cpu_enabled, METH_NOARGS, nullptr},
{"set_autocast_cpu_dtype", set_autocast_cpu_dtype, METH_O, nullptr},
{"get_autocast_cpu_dtype", get_autocast_cpu_dtype, METH_NOARGS, nullptr},
{"set_autocast_gpu_dtype", set_autocast_gpu_dtype, METH_O, nullptr},
{"get_autocast_gpu_dtype", get_autocast_gpu_dtype, METH_NOARGS, nullptr},
{"autocast_increment_nesting", autocast_increment_nesting, METH_NOARGS, nullptr},
{"autocast_decrement_nesting", autocast_decrement_nesting, METH_NOARGS, nullptr},
{"set_anomaly_enabled", set_anomaly_mode_enabled, METH_O, nullptr},
{"is_anomaly_enabled", is_anomaly_mode_enabled, METH_NOARGS, nullptr},
{"_enter_dual_level", python_enter_dual_level, METH_NOARGS, nullptr},
{"_exit_dual_level", castPyCFunctionWithKeywords(python_exit_dual_level), METH_VARARGS | METH_KEYWORDS, nullptr},
{nullptr, nullptr, 0, nullptr}
};
PyMethodDef* python_functions() {
return methods;
}
}} // namespace torch::autograd