mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Test Plan: revert-hammer
Differential Revision:
D29241736 (0d2a936176)
Original commit changeset: 288b9b1f3125
fbshipit-source-id: 56c4ec98647c6f1822b130726741a1c9ca193670
360 lines
11 KiB
Python
360 lines
11 KiB
Python
r"""Functional interface"""
|
|
import math
|
|
import torch
|
|
from torch import Tensor
|
|
from typing import List, Optional
|
|
|
|
# TODO: use foreach API in optim._functional to do all the computation
|
|
|
|
def _make_sparse(grad, grad_indices, values):
|
|
size = grad.size()
|
|
if grad_indices.numel() == 0 or values.numel() == 0:
|
|
return torch.empty_like(grad)
|
|
return torch.sparse_coo_tensor(grad_indices, values, size)
|
|
|
|
|
|
def adagrad(params: List[Tensor],
|
|
grads: List[Tensor],
|
|
state_sums: List[Tensor],
|
|
state_steps: List[int],
|
|
*,
|
|
lr: float,
|
|
weight_decay: float,
|
|
lr_decay: float,
|
|
eps: float):
|
|
r"""Functional API that performs Adagrad algorithm computation.
|
|
|
|
See :class:`~torch.optim.Adagrad` for details.
|
|
"""
|
|
|
|
for (param, grad, state_sum, step) in zip(params, grads, state_sums, state_steps):
|
|
if weight_decay != 0:
|
|
if grad.is_sparse:
|
|
raise RuntimeError("weight_decay option is not compatible with sparse gradients")
|
|
grad = grad.add(param, alpha=weight_decay)
|
|
|
|
clr = lr / (1 + (step - 1) * lr_decay)
|
|
|
|
if grad.is_sparse:
|
|
grad = grad.coalesce() # the update is non-linear so indices must be unique
|
|
grad_indices = grad._indices()
|
|
grad_values = grad._values()
|
|
size = grad.size()
|
|
|
|
state_sum.add_(_make_sparse(grad, grad_indices, grad_values.pow(2)))
|
|
std = state_sum.sparse_mask(grad)
|
|
std_values = std._values().sqrt_().add_(eps)
|
|
param.add_(_make_sparse(grad, grad_indices, grad_values / std_values), alpha=-clr)
|
|
else:
|
|
state_sum.addcmul_(grad, grad, value=1)
|
|
std = state_sum.sqrt().add_(eps)
|
|
param.addcdiv_(grad, std, value=-clr)
|
|
|
|
|
|
def adam(params: List[Tensor],
|
|
grads: List[Tensor],
|
|
exp_avgs: List[Tensor],
|
|
exp_avg_sqs: List[Tensor],
|
|
max_exp_avg_sqs: List[Tensor],
|
|
state_steps: List[int],
|
|
*,
|
|
amsgrad: bool,
|
|
beta1: float,
|
|
beta2: float,
|
|
lr: float,
|
|
weight_decay: float,
|
|
eps: float):
|
|
r"""Functional API that performs Adam algorithm computation.
|
|
|
|
See :class:`~torch.optim.Adam` for details.
|
|
"""
|
|
|
|
for i, param in enumerate(params):
|
|
|
|
grad = grads[i]
|
|
exp_avg = exp_avgs[i]
|
|
exp_avg_sq = exp_avg_sqs[i]
|
|
step = state_steps[i]
|
|
|
|
bias_correction1 = 1 - beta1 ** step
|
|
bias_correction2 = 1 - beta2 ** step
|
|
|
|
if weight_decay != 0:
|
|
grad = grad.add(param, alpha=weight_decay)
|
|
|
|
# Decay the first and second moment running average coefficient
|
|
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
|
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
|
|
if amsgrad:
|
|
# Maintains the maximum of all 2nd moment running avg. till now
|
|
torch.maximum(max_exp_avg_sqs[i], exp_avg_sq, out=max_exp_avg_sqs[i])
|
|
# Use the max. for normalizing running avg. of gradient
|
|
denom = (max_exp_avg_sqs[i].sqrt() / math.sqrt(bias_correction2)).add_(eps)
|
|
else:
|
|
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps)
|
|
|
|
step_size = lr / bias_correction1
|
|
|
|
param.addcdiv_(exp_avg, denom, value=-step_size)
|
|
|
|
|
|
def adamw(params: List[Tensor],
|
|
grads: List[Tensor],
|
|
exp_avgs: List[Tensor],
|
|
exp_avg_sqs: List[Tensor],
|
|
max_exp_avg_sqs: List[Tensor],
|
|
state_steps: List[int],
|
|
*,
|
|
amsgrad: bool,
|
|
beta1: float,
|
|
beta2: float,
|
|
lr: float,
|
|
weight_decay: float,
|
|
eps: float):
|
|
r"""Functional API that performs AdamW algorithm computation.
|
|
|
|
See :class:`~torch.optim.AdamW` for details.
|
|
"""
|
|
for i, param in enumerate(params):
|
|
grad = grads[i]
|
|
exp_avg = exp_avgs[i]
|
|
exp_avg_sq = exp_avg_sqs[i]
|
|
step = state_steps[i]
|
|
|
|
# Perform stepweight decay
|
|
param.mul_(1 - lr * weight_decay)
|
|
|
|
bias_correction1 = 1 - beta1 ** step
|
|
bias_correction2 = 1 - beta2 ** step
|
|
|
|
# Decay the first and second moment running average coefficient
|
|
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
|
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
|
|
if amsgrad:
|
|
# Maintains the maximum of all 2nd moment running avg. till now
|
|
torch.maximum(max_exp_avg_sqs[i], exp_avg_sq, out=max_exp_avg_sqs[i])
|
|
# Use the max. for normalizing running avg. of gradient
|
|
denom = (max_exp_avg_sqs[i].sqrt() / math.sqrt(bias_correction2)).add_(eps)
|
|
else:
|
|
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps)
|
|
|
|
step_size = lr / bias_correction1
|
|
|
|
param.addcdiv_(exp_avg, denom, value=-step_size)
|
|
|
|
|
|
def sgd(params: List[Tensor],
|
|
d_p_list: List[Tensor],
|
|
momentum_buffer_list: List[Optional[Tensor]],
|
|
*,
|
|
weight_decay: float,
|
|
momentum: float,
|
|
lr: float,
|
|
dampening: float,
|
|
nesterov: bool):
|
|
r"""Functional API that performs SGD algorithm computation.
|
|
|
|
See :class:`~torch.optim.SGD` for details.
|
|
"""
|
|
|
|
for i, param in enumerate(params):
|
|
|
|
d_p = d_p_list[i]
|
|
if weight_decay != 0:
|
|
d_p = d_p.add(param, alpha=weight_decay)
|
|
|
|
if momentum != 0:
|
|
buf = momentum_buffer_list[i]
|
|
|
|
if buf is None:
|
|
buf = torch.clone(d_p).detach()
|
|
momentum_buffer_list[i] = buf
|
|
else:
|
|
buf.mul_(momentum).add_(d_p, alpha=1 - dampening)
|
|
|
|
if nesterov:
|
|
d_p = d_p.add(buf, alpha=momentum)
|
|
else:
|
|
d_p = buf
|
|
|
|
param.add_(d_p, alpha=-lr)
|
|
|
|
|
|
def adadelta(params: List[Tensor],
|
|
grads: List[Tensor],
|
|
square_avgs: List[Tensor],
|
|
acc_deltas: List[Tensor],
|
|
*,
|
|
lr: float,
|
|
rho: float,
|
|
eps: float,
|
|
weight_decay: float):
|
|
r"""Functional API that performs Adadelta algorithm computation.
|
|
|
|
See :class:`~torch.optim.Adadelta` for details.
|
|
"""
|
|
|
|
for (param, grad, square_avg, acc_delta) in zip(params, grads, square_avgs, acc_deltas):
|
|
if weight_decay != 0:
|
|
grad = grad.add(param, alpha=weight_decay)
|
|
|
|
square_avg.mul_(rho).addcmul_(grad, grad, value=1 - rho)
|
|
std = square_avg.add(eps).sqrt_()
|
|
delta = acc_delta.add(eps).sqrt_().div_(std).mul_(grad)
|
|
param.add_(delta, alpha=-lr)
|
|
acc_delta.mul_(rho).addcmul_(delta, delta, value=1 - rho)
|
|
|
|
|
|
def rmsprop(params: List[Tensor],
|
|
grads: List[Tensor],
|
|
square_avgs: List[Tensor],
|
|
grad_avgs: List[Tensor],
|
|
momentum_buffer_list: List[Tensor],
|
|
*,
|
|
lr: float,
|
|
alpha: float,
|
|
eps: float,
|
|
weight_decay: float,
|
|
momentum: float,
|
|
centered: bool):
|
|
r"""Functional API that performs rmsprop algorithm computation.
|
|
|
|
See :class:`~torch.optim.RMSProp` for details.
|
|
"""
|
|
|
|
for i, param in enumerate(params):
|
|
grad = grads[i]
|
|
square_avg = square_avgs[i]
|
|
|
|
if weight_decay != 0:
|
|
grad = grad.add(param, alpha=weight_decay)
|
|
|
|
square_avg.mul_(alpha).addcmul_(grad, grad, value=1 - alpha)
|
|
|
|
if centered:
|
|
grad_avg = grad_avgs[i]
|
|
grad_avg.mul_(alpha).add_(grad, alpha=1 - alpha)
|
|
avg = square_avg.addcmul(grad_avg, grad_avg, value=-1).sqrt_().add_(eps)
|
|
else:
|
|
avg = square_avg.sqrt().add_(eps)
|
|
|
|
if momentum > 0:
|
|
buf = momentum_buffer_list[i]
|
|
buf.mul_(momentum).addcdiv_(grad, avg)
|
|
param.add_(buf, alpha=-lr)
|
|
else:
|
|
param.addcdiv_(grad, avg, value=-lr)
|
|
|
|
|
|
def rprop(params: List[Tensor],
|
|
grads: List[Tensor],
|
|
prevs: List[Tensor],
|
|
step_sizes: List[Tensor],
|
|
*,
|
|
step_size_min: float,
|
|
step_size_max: float,
|
|
etaminus: float,
|
|
etaplus: float):
|
|
r"""Functional API that performs rprop algorithm computation.
|
|
|
|
See :class:`~torch.optim.Rprop` for details.
|
|
"""
|
|
|
|
for i, param in enumerate(params):
|
|
grad = grads[i]
|
|
prev = prevs[i]
|
|
step_size = step_sizes[i]
|
|
|
|
sign = grad.mul(prev).sign()
|
|
sign[sign.gt(0)] = etaplus
|
|
sign[sign.lt(0)] = etaminus
|
|
sign[sign.eq(0)] = 1
|
|
|
|
# update stepsizes with step size updates
|
|
step_size.mul_(sign).clamp_(step_size_min, step_size_max)
|
|
|
|
# for dir<0, dfdx=0
|
|
# for dir>=0 dfdx=dfdx
|
|
grad = grad.clone(memory_format=torch.preserve_format)
|
|
grad[sign.eq(etaminus)] = 0
|
|
|
|
# update parameters
|
|
param.addcmul_(grad.sign(), step_size, value=-1)
|
|
|
|
prev.copy_(grad)
|
|
|
|
|
|
def adamax(params: List[Tensor],
|
|
grads: List[Tensor],
|
|
exp_avgs: List[Tensor],
|
|
exp_infs: List[Tensor],
|
|
state_steps: List[int],
|
|
*,
|
|
eps: float,
|
|
beta1: float,
|
|
beta2: float,
|
|
lr: float,
|
|
weight_decay: float):
|
|
r"""Functional API that performs adamax algorithm computation.
|
|
|
|
See :class:`~torch.optim.Adamax` for details.
|
|
"""
|
|
|
|
for i, param in enumerate(params):
|
|
grad = grads[i]
|
|
exp_avg = exp_avgs[i]
|
|
exp_inf = exp_infs[i]
|
|
step = state_steps[i]
|
|
|
|
if weight_decay != 0:
|
|
grad = grad.add(param, alpha=weight_decay)
|
|
|
|
# Update biased first moment estimate.
|
|
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
|
|
# Update the exponentially weighted infinity norm.
|
|
norm_buf = torch.cat([
|
|
exp_inf.mul_(beta2).unsqueeze(0),
|
|
grad.abs().add_(eps).unsqueeze_(0)
|
|
], 0)
|
|
torch.amax(norm_buf, 0, keepdim=False, out=exp_inf)
|
|
|
|
bias_correction = 1 - beta1 ** step
|
|
clr = lr / bias_correction
|
|
|
|
param.addcdiv_(exp_avg, exp_inf, value=-clr)
|
|
|
|
|
|
def asgd(params: List[Tensor],
|
|
grads: List[Tensor],
|
|
axs: List[Tensor],
|
|
mus: List[float],
|
|
etas: List[float],
|
|
*,
|
|
weight_decay: float,
|
|
lambd: float):
|
|
r"""Functional API that performs asgd algorithm computation.
|
|
|
|
See :class:`~torch.optim.ASGD` for details.
|
|
"""
|
|
|
|
for i, param in enumerate(params):
|
|
grad = grads[i]
|
|
mu = mus[i]
|
|
ax = axs[i]
|
|
eta = etas[i]
|
|
|
|
if weight_decay != 0:
|
|
grad = grad.add(param, alpha=weight_decay)
|
|
|
|
# decay term
|
|
param.mul_(1 - lambd * eta)
|
|
|
|
# update parameter
|
|
param.add_(grad, alpha=-eta)
|
|
|
|
# averaging
|
|
if mu != 1:
|
|
ax.add_(param.sub(ax).mul(mu))
|
|
else:
|
|
ax.copy_(param)
|