mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/13125 Previously, it returned a vector of THCStream*, which we eventually turned into CUDAStream. No need to spatter the conversion code everywhere: just do it correctly to begin with. An important side effect of doing it this way is that we no longer pass nullptr to CUDAStream; instead, we create the default stream. I will rely on this in a later patch. Reviewed By: gchanan Differential Revision: D10853224 fbshipit-source-id: f6bd6594eba4626eb41a4a5e67fc64c9bbb46a1a
69 lines
2.2 KiB
C++
69 lines
2.2 KiB
C++
#include "torch/csrc/utils/pybind.h"
|
|
#include "torch/csrc/cuda/comm.h"
|
|
#include "torch/csrc/cuda/Stream.h"
|
|
#include "torch/csrc/cuda/THCP.h"
|
|
#include "torch/csrc/utils/auto_gil.h"
|
|
#include "torch/csrc/utils/functional.h"
|
|
|
|
#include <ATen/ATen.h>
|
|
|
|
#include <THC/THC.h>
|
|
|
|
#include <cstddef>
|
|
#include <vector>
|
|
|
|
namespace torch { namespace cuda { namespace python {
|
|
void initCommMethods(PyObject *module) {
|
|
auto m = py::cast<py::module>(module);
|
|
m.def(
|
|
"_broadcast_coalesced",
|
|
[](std::vector<at::Tensor>& tensors,
|
|
std::vector<int64_t> devices,
|
|
size_t buffer_size) {
|
|
return broadcast_coalesced(tensors, devices, buffer_size);
|
|
},
|
|
py::arg("tensors"),
|
|
py::arg("devices"),
|
|
py::arg("buffer_size"),
|
|
py::call_guard<py::gil_scoped_release>())
|
|
.def(
|
|
"_broadcast",
|
|
[](at::Tensor& tensor, std::vector<int64_t> devices) {
|
|
return broadcast(tensor, devices);
|
|
},
|
|
py::call_guard<py::gil_scoped_release>())
|
|
.def(
|
|
"_scatter",
|
|
[](at::Tensor& tensor,
|
|
std::vector<int64_t>& devices,
|
|
c10::optional<std::vector<int64_t>> chunk_sizes,
|
|
int64_t dim,
|
|
c10::optional<py::object> py_streams) {
|
|
c10::optional<std::vector<c10::optional<at::cuda::CUDAStream>>> streams;
|
|
if (py_streams) {
|
|
py::handle handle = *py_streams;
|
|
streams = THPUtils_PySequence_to_CUDAStreamList(handle.ptr());
|
|
}
|
|
// Note: We're holding the GIL up to here.
|
|
AutoNoGIL no_gil;
|
|
return scatter(tensor, devices, chunk_sizes, dim, streams);
|
|
},
|
|
py::arg("tensor"),
|
|
py::arg("devices"),
|
|
py::arg("chunk_sizes"),
|
|
py::arg("dim"),
|
|
py::arg("streams"))
|
|
.def(
|
|
"_gather",
|
|
[](std::vector<at::Tensor>& tensors,
|
|
int64_t dim,
|
|
c10::optional<int32_t> destination_index) {
|
|
return gather(tensors, dim, destination_index);
|
|
},
|
|
py::arg("tensors"),
|
|
py::arg("dim"),
|
|
py::arg("destination_index"),
|
|
py::call_guard<py::gil_scoped_release>());
|
|
}
|
|
}}}
|