pytorch/torch/csrc/cuda/python_comm.cpp
Edward Yang 1a4473bbd7 Rewrite THPUtils_PySequence_to_CUDAStreamList to return vector<optional<CUDAStream>> (#13125)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13125

Previously, it returned a vector of THCStream*, which we eventually turned
into CUDAStream.  No need to spatter the conversion code everywhere: just
do it correctly to begin with.  An important side effect of doing it this
way is that we no longer pass nullptr to CUDAStream; instead, we create
the default stream.  I will rely on this in a later patch.

Reviewed By: gchanan

Differential Revision: D10853224

fbshipit-source-id: f6bd6594eba4626eb41a4a5e67fc64c9bbb46a1a
2018-10-29 08:27:23 -07:00

69 lines
2.2 KiB
C++

#include "torch/csrc/utils/pybind.h"
#include "torch/csrc/cuda/comm.h"
#include "torch/csrc/cuda/Stream.h"
#include "torch/csrc/cuda/THCP.h"
#include "torch/csrc/utils/auto_gil.h"
#include "torch/csrc/utils/functional.h"
#include <ATen/ATen.h>
#include <THC/THC.h>
#include <cstddef>
#include <vector>
namespace torch { namespace cuda { namespace python {
void initCommMethods(PyObject *module) {
auto m = py::cast<py::module>(module);
m.def(
"_broadcast_coalesced",
[](std::vector<at::Tensor>& tensors,
std::vector<int64_t> devices,
size_t buffer_size) {
return broadcast_coalesced(tensors, devices, buffer_size);
},
py::arg("tensors"),
py::arg("devices"),
py::arg("buffer_size"),
py::call_guard<py::gil_scoped_release>())
.def(
"_broadcast",
[](at::Tensor& tensor, std::vector<int64_t> devices) {
return broadcast(tensor, devices);
},
py::call_guard<py::gil_scoped_release>())
.def(
"_scatter",
[](at::Tensor& tensor,
std::vector<int64_t>& devices,
c10::optional<std::vector<int64_t>> chunk_sizes,
int64_t dim,
c10::optional<py::object> py_streams) {
c10::optional<std::vector<c10::optional<at::cuda::CUDAStream>>> streams;
if (py_streams) {
py::handle handle = *py_streams;
streams = THPUtils_PySequence_to_CUDAStreamList(handle.ptr());
}
// Note: We're holding the GIL up to here.
AutoNoGIL no_gil;
return scatter(tensor, devices, chunk_sizes, dim, streams);
},
py::arg("tensor"),
py::arg("devices"),
py::arg("chunk_sizes"),
py::arg("dim"),
py::arg("streams"))
.def(
"_gather",
[](std::vector<at::Tensor>& tensors,
int64_t dim,
c10::optional<int32_t> destination_index) {
return gather(tensors, dim, destination_index);
},
py::arg("tensors"),
py::arg("dim"),
py::arg("destination_index"),
py::call_guard<py::gil_scoped_release>());
}
}}}