mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
More context in [#132471](https://github.com/pytorch/pytorch/issues/132471) and https://github.com/pytorch/pytorch/issues/132366. TLDR: When cuda is available and users move tensors to cuda, we cannot really reuse the default pg if default pg is gloo, as lots of collectives are not supported on gloo for cuda tensors. For example, `dtensor.full_tensor()` would result in a mysterious SIGTERM when all_gather a cuda tensor using gloo. Without the change in this PR, users would have to know the context and explicitly move the cuda tensor to cpu before invoking most collectives, which I think is not so ideal UX. Therefore, given most collectives are not supported on gloo for cuda tensors, we should init a new pg if the default pg is gloo when torch.cuda.is_available() and device_type is cuda. Pull Request resolved: https://github.com/pytorch/pytorch/pull/132709 Approved by: https://github.com/awgu, https://github.com/wanchaol
892 lines
35 KiB
Python
892 lines
35 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates
|
|
# Owner(s): ["oncall: distributed"]
|
|
import os
|
|
|
|
import torch
|
|
import torch.distributed._functional_collectives as funcol
|
|
from torch.distributed._tensor import DTensor
|
|
from torch.distributed._tensor._collective_utils import (
|
|
mesh_broadcast,
|
|
mesh_scatter,
|
|
unpad_tensor,
|
|
)
|
|
from torch.distributed._tensor.placement_types import _Partial, Shard
|
|
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh, init_device_mesh
|
|
from torch.distributed.distributed_c10d import (
|
|
_get_default_group,
|
|
_world,
|
|
get_global_rank,
|
|
get_world_size,
|
|
init_process_group,
|
|
is_initialized,
|
|
is_nccl_available,
|
|
ProcessGroup,
|
|
)
|
|
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
|
|
from torch.testing._internal.common_utils import run_tests
|
|
from torch.testing._internal.distributed._tensor.common_dtensor import (
|
|
DTensorTestBase,
|
|
with_comms,
|
|
)
|
|
from torch.testing._internal.distributed.fake_pg import FakeStore
|
|
|
|
|
|
def _get_device_type(world_size):
|
|
if (
|
|
torch.cuda.is_available()
|
|
and torch.cuda.device_count() >= world_size
|
|
and is_nccl_available()
|
|
):
|
|
device_type = "cuda"
|
|
else:
|
|
device_type = "cpu"
|
|
return device_type
|
|
|
|
|
|
def _set_env_var(addr="localhost", port="25364", world_size=1, rank=0):
|
|
os.environ["MASTER_ADDR"] = addr
|
|
os.environ["MASTER_PORT"] = port
|
|
os.environ["WORLD_SIZE"] = f"{world_size}"
|
|
os.environ["RANK"] = f"{rank}"
|
|
|
|
|
|
class DeviceMeshTestGlooBackend(DTensorTestBase):
|
|
@property
|
|
def backend(self):
|
|
return "gloo"
|
|
|
|
@with_comms
|
|
def test_device_mesh_reuse_default_group(self):
|
|
mesh = init_device_mesh(self.device_type, (self.world_size,))
|
|
mesh_group = mesh.get_group()
|
|
default_group = _get_default_group()
|
|
if torch.cuda.is_available():
|
|
self.assertNotEqual(mesh_group, default_group)
|
|
self.assertEqual(get_world_size(mesh_group), get_world_size(default_group))
|
|
else:
|
|
self.assertEqual(mesh_group, default_group)
|
|
|
|
|
|
class DeviceMeshTest(DTensorTestBase):
|
|
@property
|
|
def world_size(self):
|
|
return 4
|
|
|
|
def test_init_process_group(self):
|
|
device_type = _get_device_type(self.world_size)
|
|
mesh_tensor = torch.arange(4).reshape(2, 2)
|
|
self.assertTrue(not is_initialized())
|
|
_set_env_var(world_size=self.world_size, rank=self.rank)
|
|
DeviceMesh(device_type, mesh_tensor)
|
|
self.assertTrue(is_initialized())
|
|
self.destroy_pg()
|
|
|
|
@with_comms
|
|
@skip_if_lt_x_gpu(4)
|
|
def test_assert_invalid_mesh_tensor(self):
|
|
mesh = torch.arange(self.world_size).to(self.rank)
|
|
with self.assertRaises(ValueError):
|
|
device_mesh = DeviceMesh(self.device_type, mesh)
|
|
|
|
@with_comms
|
|
def test_get_group_and_get_all_groups(self):
|
|
mesh_shape = (2, self.world_size // 2)
|
|
mesh_2d = init_device_mesh(
|
|
self.device_type, mesh_shape, mesh_dim_names=("dp", "tp")
|
|
)
|
|
|
|
tp_mesh = mesh_2d["tp"]
|
|
dp_mesh = mesh_2d["dp"]
|
|
|
|
self.assertEqual(mesh_2d.get_group(0), mesh_2d.get_group("dp"))
|
|
self.assertEqual(mesh_2d.get_group(1), mesh_2d.get_group("tp"))
|
|
|
|
self.assertEqual(mesh_2d.get_group("dp"), dp_mesh.get_group())
|
|
self.assertEqual(mesh_2d.get_group("tp"), tp_mesh.get_group())
|
|
|
|
groups = mesh_2d.get_all_groups()
|
|
self.assertEqual(len(groups), 2)
|
|
self.assertTrue(tp_mesh.get_group() in groups)
|
|
self.assertTrue(dp_mesh.get_group() in groups)
|
|
|
|
@with_comms
|
|
def test_get_local_rank_raises_exception(self):
|
|
mesh_shape = (2, self.world_size // 2)
|
|
mesh_2d = init_device_mesh(
|
|
self.device_type, mesh_shape, mesh_dim_names=("dp", "tp")
|
|
)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Optional kwarg `mesh_dim` needs to be specified when device_mesh.ndim > 1.",
|
|
):
|
|
local_rank = mesh_2d.get_local_rank()
|
|
|
|
@with_comms
|
|
def test_get_local_rank(self):
|
|
mesh_shape = (2, self.world_size // 2)
|
|
mesh_2d = init_device_mesh(
|
|
self.device_type, mesh_shape, mesh_dim_names=("dp", "tp")
|
|
)
|
|
self.assertEqual(mesh_2d.get_local_rank("dp"), mesh_2d.get_local_rank(0))
|
|
self.assertEqual(mesh_2d.get_local_rank("tp"), mesh_2d.get_local_rank(1))
|
|
|
|
dp_mesh = mesh_2d["dp"]
|
|
tp_mesh = mesh_2d["tp"]
|
|
self.assertEqual(dp_mesh.get_local_rank(), mesh_2d.get_local_rank("dp"))
|
|
self.assertEqual(tp_mesh.get_local_rank(), mesh_2d.get_local_rank("tp"))
|
|
|
|
@with_comms
|
|
def test_device_mesh_2d(self):
|
|
mesh_tensor = torch.arange(4).reshape(2, 2)
|
|
# construct a cuda device mesh
|
|
mesh = DeviceMesh(self.device_type, mesh_tensor)
|
|
|
|
# check all dim groups
|
|
dim_to_subgroups = mesh.get_all_groups()
|
|
|
|
expected_ranks_by_dim = [[[0, 2], [1, 3]], [[0, 1], [2, 3]]]
|
|
for dim, dim_group in enumerate(dim_to_subgroups):
|
|
self.assertTrue(dim < 2)
|
|
dim_ranks = expected_ranks_by_dim[dim]
|
|
|
|
dim_group_size = get_world_size(dim_group)
|
|
self.assertIsInstance(dim_group, ProcessGroup)
|
|
self.assertEqual(dim_group_size, 2)
|
|
global_ranks = [
|
|
get_global_rank(dim_group, i) for i in range(dim_group_size)
|
|
]
|
|
current_rank_expected_group_ranks = (
|
|
dim_ranks[0] if self.rank in dim_ranks[0] else dim_ranks[1]
|
|
)
|
|
self.assertEqual(global_ranks, current_rank_expected_group_ranks)
|
|
|
|
@with_comms
|
|
def test_device_mesh_init_backend(self):
|
|
mesh = DeviceMesh(self.device_type, [1], _init_backend=False)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "process groups not initialized!"):
|
|
mesh.get_group()
|
|
|
|
# coordinates should always been populated when init_backend is False, as whenever
|
|
# we call init_backend we should make sure the default pg already created
|
|
mesh.get_coordinate()
|
|
|
|
def test_fake_pg_device_mesh(self):
|
|
fake_store = FakeStore()
|
|
init_process_group("fake", store=fake_store, rank=0, world_size=self.world_size)
|
|
device_type = "cuda" if torch.cuda.is_available() else "cpu"
|
|
mesh = DeviceMesh(device_type, torch.arange(self.world_size))
|
|
|
|
local_tensor = torch.randn(2, 8)
|
|
global_tensor = funcol.all_gather_tensor(
|
|
local_tensor, gather_dim=0, group=(mesh, 0)
|
|
)
|
|
self.assertEqual(global_tensor.shape, (self.world_size * 2, 8))
|
|
|
|
@with_comms
|
|
def test_from_group_with_global_pg(self):
|
|
# Simple test: check `from_group` from a mesh pg vs. directly
|
|
# initializing via `init_device_mesh`
|
|
ref_global_mesh = init_device_mesh(self.device_type, (self.world_size,))
|
|
mesh_pg = ref_global_mesh.get_group()
|
|
global_mesh = DeviceMesh.from_group(mesh_pg, self.device_type)
|
|
self.assertEqual(ref_global_mesh, global_mesh)
|
|
self.assertEqual(ref_global_mesh._dim_group_infos, global_mesh._dim_group_infos)
|
|
self.assertEqual(
|
|
ref_global_mesh._coordinate_on_dim, global_mesh._coordinate_on_dim
|
|
)
|
|
|
|
@with_comms
|
|
def test_from_group_with_invalid_mesh(self):
|
|
global_pg = _get_default_group()
|
|
global_pg_size = global_pg.size()
|
|
assert global_pg_size == 4, "Test assumes global world size of 4"
|
|
invalid_mesh = [[0, 1], [2, 3]] # 2D mesh when we need 1D
|
|
regex = r"Invalid mesh \[\[0, 1\], \[2, 3\]\] for ProcessGroup with ranks \[0, 1, 2, 3\]"
|
|
with self.assertRaisesRegex(ValueError, regex):
|
|
DeviceMesh.from_group(global_pg, "cuda", invalid_mesh)
|
|
|
|
device_mesh = init_device_mesh(self.device_type, (2, 2))
|
|
groups = device_mesh.get_all_groups()
|
|
invalid_mesh = (0, 1, 2, 3) # 1D mesh when we need 2D
|
|
regex = r"Expects mesh with ndim equal to number of ProcessGroups but got mesh \[0, 1, 2, 3\] and 2 ProcessGroups"
|
|
with self.assertRaisesRegex(ValueError, regex):
|
|
DeviceMesh.from_group(groups, self.device_type, invalid_mesh)
|
|
|
|
def test_raises_invalid_device_type(self):
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Device type with GPU index is not supported",
|
|
):
|
|
# test init_device_mesh with an invalid device type that contains a GPU index
|
|
mesh_shape = (2, self.world_size // 2)
|
|
mesh_2d = init_device_mesh(
|
|
"cuda:0", mesh_shape=mesh_shape, mesh_dim_names=("dp", "tp")
|
|
)
|
|
|
|
@with_comms
|
|
def test_set_mesh_dim_group_options(self):
|
|
device_type = "cuda" if torch.cuda.is_available() else "cpu"
|
|
_mesh_resources._set_mesh_dim_group_options(1, "fake", None)
|
|
|
|
mesh_tensor = torch.arange(4).reshape(2, 2)
|
|
mesh = DeviceMesh(device_type, mesh_tensor)
|
|
self.assertEqual(mesh.get_group(1)._get_backend_name(), "fake")
|
|
|
|
|
|
class DeviceMeshTestNDim(DTensorTestBase):
|
|
@property
|
|
def world_size(self):
|
|
return 8
|
|
|
|
@with_comms
|
|
def test_device_mesh_nd(self):
|
|
# construct a cuda device mesh
|
|
mesh_tensor = torch.arange(8).reshape(2, 2, 2)
|
|
mesh = DeviceMesh(self.device_type, mesh_tensor)
|
|
|
|
# check all dim groups
|
|
dim_to_subgroups = mesh.get_all_groups()
|
|
|
|
for dim, dim_group in enumerate(dim_to_subgroups):
|
|
self.assertTrue(dim < mesh_tensor.ndim)
|
|
dim_ranks = mesh_tensor.swapdims(-1, dim).reshape(-1, 2)
|
|
|
|
dim_group_size = get_world_size(dim_group)
|
|
self.assertIsInstance(dim_group, ProcessGroup)
|
|
self.assertEqual(dim_group_size, 2)
|
|
global_ranks = [
|
|
get_global_rank(dim_group, i) for i in range(dim_group_size)
|
|
]
|
|
for ranks in dim_ranks:
|
|
if self.rank in ranks:
|
|
self.assertEqual(global_ranks, ranks.tolist())
|
|
|
|
@with_comms
|
|
def test_device_mesh_hash(self):
|
|
mesh_tensor_2d = torch.arange(8).reshape(4, 2)
|
|
mesh = DeviceMesh(self.device_type, mesh_tensor_2d)
|
|
mesh2 = DeviceMesh(self.device_type, mesh_tensor_2d)
|
|
self.assertEqual(hash(mesh), hash(mesh2))
|
|
mesh_tensor_3d = torch.arange(8).reshape(2, 2, 2)
|
|
mesh3 = DeviceMesh(self.device_type, mesh_tensor_3d)
|
|
self.assertNotEqual(hash(mesh), hash(mesh3))
|
|
self.assertNotEqual(hash(mesh2), hash(mesh3))
|
|
|
|
@with_comms
|
|
def test_get_local_rank_3d(self):
|
|
"""
|
|
If we have a 3D mesh and we want to apply dp, pp, tp to it,
|
|
mesh_dim_names = ["dp", "pp", "tp"], and the mesh tensor would be:
|
|
mesh_3d_tensor = [
|
|
[
|
|
[0, 1],
|
|
[2, 3],
|
|
],
|
|
[
|
|
[4, 5],
|
|
[6, 7],
|
|
]
|
|
|
|
]
|
|
"""
|
|
mesh_shape = (2, 2, 2)
|
|
mesh_3d = init_device_mesh(
|
|
self.device_type, mesh_shape, mesh_dim_names=("dp", "pp", "tp")
|
|
)
|
|
|
|
# tp_rank_0: [0, 2, 4, 6], tp_rank_1: [1, 3, 5, 7]
|
|
tp_rank = mesh_3d.get_local_rank("tp")
|
|
print(f"{self.rank=}, {tp_rank=}")
|
|
expected_tp_rank = self.rank % 2
|
|
self.assertEqual(tp_rank, expected_tp_rank)
|
|
|
|
# pp_rank_0: [0, 1, 4, 5], pp_rank_1: [2, 3, 6, 7]
|
|
pp_rank = mesh_3d.get_local_rank("pp")
|
|
expected_pp_rank = 0 if self.rank % 4 <= 1 else 1
|
|
self.assertEqual(pp_rank, expected_pp_rank)
|
|
|
|
# dp_rank_0: [0, 1, 2, 3], dp_rank_1: [4, 5, 6, 7]
|
|
dp_rank = mesh_3d.get_local_rank("dp")
|
|
expected_dp_rank = self.rank // 4
|
|
self.assertEqual(dp_rank, expected_dp_rank)
|
|
|
|
@with_comms
|
|
def test_device_mesh_parent_child_hash(self):
|
|
mesh_2d = init_device_mesh(
|
|
self.device_type, (2, self.world_size // 2), mesh_dim_names=("DP", "TP")
|
|
)
|
|
|
|
mesh_group_1 = torch.arange(0, self.world_size // 2)
|
|
mesh_group_2 = torch.arange(self.world_size // 2, self.world_size)
|
|
ep_mesh_1 = DeviceMesh(self.device_type, mesh_group_1)
|
|
ep_mesh_2 = DeviceMesh(self.device_type, mesh_group_2)
|
|
ep_mesh = ep_mesh_1 if self.rank < self.world_size // 2 else ep_mesh_2
|
|
# ep_mesh is considered different from mesh_2d["TP"]
|
|
# since mesh_2d["TP"] has a parent mesh while ep_mesh does not.
|
|
self.assertEqual(mesh_2d["TP"]._flatten_mesh_list, ep_mesh._flatten_mesh_list)
|
|
self.assertEqual(mesh_2d["TP"].mesh.shape, ep_mesh.mesh.shape)
|
|
self.assertEqual(mesh_2d["TP"].device_type, ep_mesh.device_type)
|
|
self.assertNotEqual(mesh_2d["TP"].mesh_dim_names, ep_mesh.mesh_dim_names)
|
|
self.assertEqual(mesh_2d["TP"]._thread_id, ep_mesh._thread_id)
|
|
self.assertNotEqual(hash(mesh_2d["TP"]), hash(ep_mesh))
|
|
self.assertNotEqual(mesh_2d["TP"], ep_mesh)
|
|
|
|
another_mesh_1 = DeviceMesh(self.device_type, mesh_group_1)
|
|
another_mesh_2 = DeviceMesh(self.device_type, mesh_group_2)
|
|
another_mesh = (
|
|
another_mesh_1 if self.rank < self.world_size // 2 else another_mesh_2
|
|
)
|
|
# another_mesh is considered the same as ep_mesh
|
|
# since they have the same mesh and no parent mesh.
|
|
self.assertEqual(ep_mesh._flatten_mesh_list, another_mesh._flatten_mesh_list)
|
|
self.assertEqual(ep_mesh.mesh.shape, another_mesh.mesh.shape)
|
|
self.assertEqual(ep_mesh.device_type, another_mesh.device_type)
|
|
self.assertEqual(ep_mesh.mesh_dim_names, another_mesh.mesh_dim_names)
|
|
self.assertEqual(ep_mesh._thread_id, another_mesh._thread_id)
|
|
self.assertEqual(hash(ep_mesh), hash(another_mesh))
|
|
self.assertEqual(ep_mesh, another_mesh)
|
|
|
|
@with_comms
|
|
def test_from_group_with_mesh_shape(self):
|
|
"""Tests ``from_group`` when passing ``mesh_shape`` as 2D."""
|
|
# Consider two different logical views of the same mesh:
|
|
# - (4, 2) ("dp", "tp") mesh
|
|
# - (2, 2, 2) ("dp_replicate", "dp_shard", "tp") mesh
|
|
mesh_shape = (2, 2, 2)
|
|
mesh_dim_names = ("dp_replicate", "dp_shard", "tp")
|
|
ref_mesh = init_device_mesh(
|
|
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
|
|
)
|
|
|
|
dp_shard_group = ref_mesh["dp_shard"].get_group()
|
|
dp_replicate_group = ref_mesh["dp_replicate"].get_group()
|
|
|
|
dp_mesh = DeviceMesh.from_group(
|
|
[dp_replicate_group, dp_shard_group],
|
|
self.device_type,
|
|
mesh=ref_mesh.mesh[:, :, ref_mesh.get_local_rank(2)],
|
|
mesh_dim_names=mesh_dim_names[:2],
|
|
)
|
|
|
|
ref_mesh_dp_dim_group_infos = ref_mesh._dim_group_infos[:2]
|
|
for (_, ref_ranks, _), (_, ranks, _) in zip(
|
|
ref_mesh_dp_dim_group_infos, dp_mesh._dim_group_infos
|
|
):
|
|
self.assertEqual(ref_ranks, ranks)
|
|
# Cannot check directly for mesh equality since parent meshes are not
|
|
# the same since the ref's parent mesh is 3D
|
|
self.assertEqual(dp_mesh["dp_replicate"].mesh, ref_mesh["dp_replicate"].mesh)
|
|
for (_, ref_ranks, _), (_, ranks, _) in zip(
|
|
dp_mesh["dp_replicate"]._dim_group_infos,
|
|
ref_mesh["dp_replicate"]._dim_group_infos,
|
|
):
|
|
self.assertEqual(ref_ranks, ranks)
|
|
self.assertEqual(dp_mesh["dp_shard"].mesh, ref_mesh["dp_shard"].mesh)
|
|
for (_, ref_ranks, _), (_, ranks, _) in zip(
|
|
dp_mesh["dp_shard"]._dim_group_infos, ref_mesh["dp_shard"]._dim_group_infos
|
|
):
|
|
self.assertEqual(ref_ranks, ranks)
|
|
|
|
|
|
class InitDeviceMeshTest(DTensorTestBase):
|
|
@property
|
|
def world_size(self):
|
|
return 8
|
|
|
|
@with_comms
|
|
def test_init_device_mesh(self):
|
|
mesh_shape = (2, 4)
|
|
mesh_dim_names = ("DP", "TP")
|
|
ref_mesh = DeviceMesh(
|
|
self.device_type,
|
|
torch.arange(8).view(mesh_shape),
|
|
mesh_dim_names=mesh_dim_names,
|
|
)
|
|
|
|
# test init_device_mesh with mesh_dim_names
|
|
mesh_2d = init_device_mesh(
|
|
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
|
|
)
|
|
self.assertEqual(mesh_2d, ref_mesh)
|
|
self.assertEqual(mesh_2d.mesh_dim_names, mesh_dim_names)
|
|
|
|
@with_comms
|
|
def test_raises_duplicate_mesh_dim_names(self):
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Each mesh_dim_name must be unique.",
|
|
):
|
|
mesh = init_device_mesh(
|
|
self.device_type,
|
|
(2, 4),
|
|
mesh_dim_names=["dp", "dp"],
|
|
)
|
|
|
|
@with_comms
|
|
def test_raises_mesh_shape_mesh_dim_names_mismatch(self):
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"mesh_shape and mesh_dim_names should have same length!",
|
|
):
|
|
mesh = init_device_mesh(
|
|
self.device_type,
|
|
(8,),
|
|
mesh_dim_names=["dp", "tp"],
|
|
)
|
|
|
|
|
|
class TestDeviceMeshGetItem(DTensorTestBase):
|
|
@property
|
|
def world_size(self):
|
|
return 8
|
|
|
|
@with_comms
|
|
def test_raises_no_mesh_dim_found(self):
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "Cannot slice a DeviceMesh without mesh_dim_names!"
|
|
):
|
|
mesh = init_device_mesh(self.device_type, (2, 4))
|
|
child_mesh = mesh["DP"]
|
|
|
|
@with_comms
|
|
def test_raises_invalid_mesh_dim_name(self):
|
|
child_mesh_dim_name = ("PP",)
|
|
with self.assertRaisesRegex(KeyError, "Invalid mesh_dim_name"):
|
|
mesh_dim_names = ("DP", "TP")
|
|
mesh = init_device_mesh(
|
|
self.device_type, (2, 4), mesh_dim_names=mesh_dim_names
|
|
)
|
|
child_mesh = mesh[child_mesh_dim_name]
|
|
|
|
@with_comms
|
|
def test_get_item_2d(self):
|
|
mesh_shape = (2, 4)
|
|
mesh_dim_names = ("DP", "TP")
|
|
mesh_2d = init_device_mesh(
|
|
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
|
|
)
|
|
|
|
pg_ranks_by_dim_name = {}
|
|
for mesh_dim_name in mesh_dim_names:
|
|
mesh_dim = mesh_dim_names.index(mesh_dim_name)
|
|
pg_ranks_by_dim_name[mesh_dim_name] = mesh_2d.mesh.swapdims(
|
|
-1, mesh_dim
|
|
).reshape(-1, mesh_2d.mesh.size(mesh_dim))
|
|
|
|
tp_mesh = mesh_2d["TP"]
|
|
tp_group_idx = self.rank // 4
|
|
self.assertEqual(tp_mesh.mesh, pg_ranks_by_dim_name["TP"][tp_group_idx])
|
|
|
|
dp_mesh = mesh_2d["DP"]
|
|
dp_group_idx = self.rank % 4
|
|
self.assertEqual(mesh_2d["DP"].mesh, pg_ranks_by_dim_name["DP"][dp_group_idx])
|
|
|
|
@with_comms
|
|
def test_get_item_1d(self):
|
|
mesh = init_device_mesh(self.device_type, (8,), mesh_dim_names=("dp",))
|
|
# Make sure slicing out 1D mesh from a 1D mesh works.
|
|
# We are just dummy return without the parent mesh here.
|
|
dp_mesh = mesh["dp"]
|
|
self.assertEqual(dp_mesh, mesh)
|
|
|
|
with self.assertRaisesRegex(KeyError, "Invalid mesh_dim_name"):
|
|
dp_mesh = mesh["dim0"]
|
|
|
|
@with_comms
|
|
def test_get_item_3d(self):
|
|
mesh_shape = (2, 2, 2)
|
|
mesh_dim_names = ("Replicate", "Shard", "TP")
|
|
mesh_3d = init_device_mesh(
|
|
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
|
|
)
|
|
|
|
tp_group = [[0, 1], [2, 3], [4, 5], [6, 7]]
|
|
tp_group_idx = int(self.rank / 2)
|
|
self.assertEqual(mesh_3d["TP"].mesh.tolist(), tp_group[tp_group_idx])
|
|
|
|
shard_group = [[0, 2], [1, 3], [4, 6], [5, 7]]
|
|
shard_group_idx = self.rank % 2 + self.rank // 4 * 2
|
|
self.assertEqual(mesh_3d["Shard"].mesh.tolist(), shard_group[shard_group_idx])
|
|
|
|
replicate_group = [[0, 4], [1, 5], [2, 6], [3, 7]]
|
|
replicate_group_idx = self.rank % 4
|
|
self.assertEqual(
|
|
mesh_3d["Replicate"].mesh.tolist(), replicate_group[replicate_group_idx]
|
|
)
|
|
|
|
# We support both UX for nD slicing.
|
|
# mesh_3d[["Replicate", "Shard"]] or mesh_3d["Replicate", "Shard"]
|
|
hsdp_mesh_1 = mesh_3d[["Replicate", "Shard"]]
|
|
hsdp_mesh_2 = mesh_3d["Replicate", "Shard"]
|
|
hsdp_group = [[[0, 2], [4, 6]], [[1, 3], [5, 7]]]
|
|
hsdp_group_idx = self.rank % 2
|
|
self.assertEqual(hsdp_mesh_1.mesh.tolist(), hsdp_group[hsdp_group_idx])
|
|
self.assertEqual(hsdp_mesh_2.mesh.tolist(), hsdp_group[hsdp_group_idx])
|
|
self.assertEqual(hsdp_mesh_1, hsdp_mesh_2)
|
|
|
|
@with_comms
|
|
def test_cache_and_reuse_submesh_slice_result(self):
|
|
mesh = init_device_mesh(self.device_type, (2, 4), mesh_dim_names=("dp", "tp"))
|
|
|
|
dp_mesh = mesh["dp"]
|
|
ref_pg_count = _world.group_count
|
|
|
|
# When we call the "dp" slice second time, it should not create any new pg.
|
|
# As we are just using the cached result so the pg count should be the same.
|
|
dp_mesh_2 = mesh["dp"]
|
|
self.assertEqual(ref_pg_count, _world.group_count)
|
|
|
|
# When we call the "tp" slice, it should not create a new pg, as the "tp" slice would
|
|
# just reuse the parent mesh pg.
|
|
tp_mesh = mesh["tp"]
|
|
self.assertEqual(_world.group_count, ref_pg_count)
|
|
|
|
@with_comms
|
|
def test_get_item_3d_noncontinuous_slicing(self):
|
|
mesh_shape = (2, 2, 2)
|
|
mesh_dim_names = ("dp", "pp", "cp")
|
|
mesh_3d = init_device_mesh(
|
|
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
|
|
)
|
|
|
|
# Slice order simply decides which mesh_dim sits on which mesh_dim.
|
|
# For dp_cp_mesh, cp mesh is the innermost dimension.
|
|
dp_cp_mesh = mesh_3d["dp", "cp"]
|
|
expected_mesh_tensor = (
|
|
torch.tensor([[0, 1], [4, 5]], dtype=torch.int)
|
|
if self.rank in (0, 1, 4, 5)
|
|
else torch.tensor([[2, 3], [6, 7]], dtype=torch.int)
|
|
)
|
|
dp_local_rank = dp_cp_mesh.get_local_rank("dp")
|
|
self.assertEqual(dp_cp_mesh.mesh, expected_mesh_tensor)
|
|
cp_mesh = mesh_3d["cp"]
|
|
# Check on the current dp_local_rank, whether the cp mesh tensor is the same.
|
|
self.assertEqual(dp_cp_mesh.mesh[dp_local_rank], cp_mesh.mesh)
|
|
|
|
# For dp_cp_mesh, dp mesh is the innermost dimension.
|
|
cp_dp_mesh = mesh_3d["cp", "dp"]
|
|
expected_mesh_tensor = (
|
|
torch.tensor([[0, 4], [1, 5]], dtype=torch.int)
|
|
if self.rank in (0, 1, 4, 5)
|
|
else torch.tensor([[2, 6], [3, 7]], dtype=torch.int)
|
|
)
|
|
cp_local_rank = cp_dp_mesh.get_local_rank("cp")
|
|
self.assertEqual(cp_dp_mesh.mesh, expected_mesh_tensor)
|
|
dp_mesh = mesh_3d["dp"]
|
|
# Check on the current cp_local_rank, whether the dp mesh tensor is the same.
|
|
self.assertEqual(cp_dp_mesh.mesh[cp_local_rank], dp_mesh.mesh)
|
|
|
|
|
|
class TestMeshEnv(DTensorTestBase):
|
|
@with_comms
|
|
def test_get_parent_mesh(self):
|
|
mesh_shape = (2, self.world_size // 2)
|
|
mesh_dim_names = ("DP", "TP")
|
|
mesh_2d = init_device_mesh(
|
|
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
|
|
)
|
|
|
|
self.assertEqual(_mesh_resources.get_parent_mesh(mesh_2d["DP"]), mesh_2d)
|
|
self.assertEqual(_mesh_resources.get_parent_mesh(mesh_2d["TP"]), mesh_2d)
|
|
|
|
mesh_0_2 = DeviceMesh(self.device_type, [0, 2])
|
|
mesh_1_3 = DeviceMesh(self.device_type, [1, 3])
|
|
|
|
self.assertEqual(_mesh_resources.get_parent_mesh(mesh_2d["DP"]), mesh_2d)
|
|
self.assertEqual(_mesh_resources.get_parent_mesh(mesh_2d["TP"]), mesh_2d)
|
|
self.assertEqual(_mesh_resources.get_parent_mesh(mesh_0_2), None)
|
|
self.assertEqual(_mesh_resources.get_parent_mesh(mesh_1_3), None)
|
|
|
|
@with_comms
|
|
def test_get_parent_mesh_dim_exist(self):
|
|
mesh_shape = (2, self.world_size // 2)
|
|
mesh_dim_names = ("DP", "TP")
|
|
mesh_2d = init_device_mesh(
|
|
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
|
|
)
|
|
|
|
self.assertEqual(_mesh_resources.get_parent_mesh_dim(mesh_2d["DP"]), 0)
|
|
self.assertEqual(_mesh_resources.get_parent_mesh_dim(mesh_2d["TP"]), 1)
|
|
|
|
@with_comms
|
|
def test_get_parent_mesh_dim_not_exist(self):
|
|
mesh_shape = (self.world_size,)
|
|
mesh = init_device_mesh(self.device_type, mesh_shape)
|
|
|
|
self.assertEqual(_mesh_resources.get_parent_mesh_dim(mesh), None)
|
|
|
|
@with_comms
|
|
def test_get_mesh_dim_by_name(self):
|
|
mesh_shape = (2, self.world_size // 2)
|
|
mesh_dim_names = ("DP", "TP")
|
|
mesh_2d = init_device_mesh(
|
|
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
|
|
)
|
|
|
|
self.assertEqual(_mesh_resources.get_mesh_dim_by_name(mesh_2d, "DP"), 0)
|
|
self.assertEqual(_mesh_resources.get_mesh_dim_by_name(mesh_2d, "TP"), 1)
|
|
|
|
|
|
class DeviceMeshCollectiveTest(DTensorTestBase):
|
|
@property
|
|
def world_size(self):
|
|
return 8
|
|
|
|
@with_comms
|
|
def test_broadcast_1d(self):
|
|
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
|
|
local_tensor = torch.ones(3, 3, device=self.device_type) * self.rank
|
|
mesh_broadcast(local_tensor, mesh, mesh_dim=0)
|
|
self.assertEqual(local_tensor, torch.zeros(3, 3))
|
|
|
|
@with_comms
|
|
def test_scatter_1d(self):
|
|
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
|
|
scatter_tensor_shape = [3, 3, 3]
|
|
for scatter_dim in range(len(scatter_tensor_shape)):
|
|
shard_placement = Shard(scatter_dim)
|
|
scatter_tensor_shape[scatter_dim] *= self.world_size
|
|
# make the random seed same across rank
|
|
torch.manual_seed(0)
|
|
global_tensor = torch.randn(scatter_tensor_shape, device=self.device_type)
|
|
splitted_list, _ = shard_placement._split_tensor(
|
|
global_tensor, mesh.size(), with_padding=True, contiguous=True
|
|
)
|
|
recv_tensor = torch.empty_like(splitted_list[mesh.get_rank()])
|
|
# scatter on dim > 0 would generate non-contiguous tensor, verify that works
|
|
mesh_scatter(recv_tensor, splitted_list, mesh, mesh_dim=0)
|
|
self.assertEqual(recv_tensor, splitted_list[mesh.get_rank()])
|
|
|
|
@with_comms
|
|
def test_scatter_uneven(self):
|
|
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
|
|
my_rank = device_mesh.get_rank()
|
|
tensor_to_split = torch.randn(
|
|
device_mesh.size() + 3, device_mesh.size() + 1, device=self.device_type
|
|
)
|
|
|
|
for shard_dim in range(tensor_to_split.ndim):
|
|
shard_placement = Shard(shard_dim)
|
|
|
|
tensor_to_scatter = tensor_to_split.clone()
|
|
tensor_splitted_list = list(
|
|
torch.chunk(tensor_to_split, self.world_size, dim=shard_dim)
|
|
)
|
|
for _ in range(self.world_size - len(tensor_splitted_list)):
|
|
tensor_splitted_list.append(torch.tensor([], device=self.device_type))
|
|
|
|
padded_tensor_list, pad_sizes = shard_placement._split_tensor(
|
|
tensor_to_scatter,
|
|
device_mesh.size(),
|
|
with_padding=True,
|
|
contiguous=True,
|
|
)
|
|
|
|
scattered_tensor = torch.empty_like(padded_tensor_list[my_rank])
|
|
mesh_scatter(scattered_tensor, padded_tensor_list, device_mesh, mesh_dim=0)
|
|
|
|
if pad_sizes[my_rank] != 0:
|
|
scattered_tensor = unpad_tensor(
|
|
scattered_tensor, shard_dim, pad_sizes[my_rank]
|
|
)
|
|
|
|
if scattered_tensor.numel() == 0:
|
|
# We need to check numel() instead of size if a tensor is ([]) after unpadding,
|
|
# since the size could be ([0, 8]) after unpadding.
|
|
self.assertEqual(
|
|
scattered_tensor.numel(), tensor_splitted_list[my_rank].numel()
|
|
)
|
|
else:
|
|
self.assertEqual(
|
|
scattered_tensor.size(), tensor_splitted_list[my_rank].size()
|
|
)
|
|
self.assertEqual(scattered_tensor, tensor_splitted_list[my_rank])
|
|
|
|
@with_comms
|
|
def test_all_gather_uneven(self):
|
|
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
|
|
my_rank = device_mesh.get_rank()
|
|
tensor_to_split = torch.ones(
|
|
device_mesh.size() + 3,
|
|
device_mesh.size() + 1,
|
|
device=self.device_type,
|
|
)
|
|
|
|
for shard_dim in range(tensor_to_split.ndim):
|
|
shard_placement = Shard(shard_dim)
|
|
tensor_padded_list, pad_sizes = shard_placement._split_tensor(
|
|
tensor_to_split,
|
|
device_mesh.size(),
|
|
with_padding=True,
|
|
contiguous=True,
|
|
)
|
|
local_tensor = tensor_padded_list[my_rank]
|
|
big_tensor = funcol.all_gather_tensor(
|
|
local_tensor, gather_dim=shard_dim, group=(device_mesh, 0)
|
|
)
|
|
big_tensor_chunks = list(
|
|
torch.chunk(big_tensor, device_mesh.size(), dim=shard_dim)
|
|
)
|
|
unpadded_list = [
|
|
(
|
|
unpad_tensor(big_tensor, shard_dim, pad_sizes[i])
|
|
if pad_sizes[i] > 0
|
|
else big_tensor
|
|
)
|
|
for i, big_tensor in enumerate(big_tensor_chunks)
|
|
]
|
|
all_gathered_tensor = torch.cat(unpadded_list, dim=shard_dim)
|
|
|
|
self.assertEqual(all_gathered_tensor.size(), tensor_to_split.size())
|
|
self.assertEqual(all_gathered_tensor, tensor_to_split)
|
|
|
|
@with_comms
|
|
def test_reduce_scatter_contiguous(self):
|
|
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
|
|
my_rank = device_mesh.get_rank()
|
|
|
|
# Init the tensor
|
|
step = self.world_size * 2
|
|
total_elem = step**2
|
|
tensor = torch.arange(0, total_elem).view(step, -1).to(device=self.device_type)
|
|
tensor = tensor * (my_rank + 1)
|
|
|
|
# Get non-contiguous tensor by slicing
|
|
tensor_to_reduce = tensor[::2, :2]
|
|
tensor_contiguous = tensor_to_reduce.clone().contiguous()
|
|
|
|
# Partial to Shard to trigger reduce_scatter
|
|
tensor_to_reduce = DTensor.from_local(
|
|
tensor_to_reduce, device_mesh, [_Partial()]
|
|
)
|
|
tensor_contiguous = DTensor.from_local(
|
|
tensor_contiguous, device_mesh, [_Partial()]
|
|
)
|
|
new_tensor = tensor_to_reduce.redistribute(device_mesh, [Shard(0)])
|
|
new_tensor_contiguous = tensor_contiguous.redistribute(device_mesh, [Shard(0)])
|
|
|
|
# The output for contiguous and non-contiguous tensors of the same value
|
|
# should return the same reducescatter value.
|
|
new_tensor_local = new_tensor._local_tensor
|
|
new_tensor_contiguous_local = new_tensor_contiguous._local_tensor
|
|
self.assertEqual(new_tensor_local, new_tensor_contiguous_local)
|
|
self.assertEqual(list(new_tensor_local.size()), [1, 2])
|
|
|
|
# Check the reduce numerical value
|
|
sum_base = (1 + self.world_size) * self.world_size / 2
|
|
first_elem = my_rank * sum_base * step * 2
|
|
expected_tensor = torch.tensor(
|
|
[[first_elem, first_elem + sum_base]],
|
|
dtype=new_tensor_local.dtype,
|
|
device=self.device_type,
|
|
)
|
|
self.assertEqual(new_tensor_local, expected_tensor)
|
|
|
|
@with_comms
|
|
def test_reduce_scatter_uneven(self):
|
|
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
|
|
my_rank = device_mesh.get_rank()
|
|
tensor_to_split = (
|
|
torch.ones(
|
|
device_mesh.size() + 3,
|
|
device_mesh.size() + 1,
|
|
device=self.device_type,
|
|
)
|
|
* self.rank
|
|
)
|
|
|
|
for shard_dim in range(tensor_to_split.ndim):
|
|
shard_placement = Shard(shard_dim)
|
|
tensor_to_scatter = tensor_to_split.clone()
|
|
|
|
tensor_splitted_list = list(
|
|
torch.chunk(tensor_to_split, self.world_size, dim=shard_dim)
|
|
)
|
|
for _ in range(self.world_size - len(tensor_splitted_list)):
|
|
tensor_splitted_list.append(torch.tensor([], device=self.device_type))
|
|
|
|
padded_tensor_list, pad_sizes = shard_placement._split_tensor(
|
|
tensor_to_scatter,
|
|
device_mesh.size(),
|
|
with_padding=True,
|
|
contiguous=True,
|
|
)
|
|
|
|
tensor_to_reduce = torch.cat(padded_tensor_list, shard_dim)
|
|
|
|
res_num = ((0 + self.world_size - 1) * self.world_size) / 2
|
|
|
|
scattered_tensor = funcol.reduce_scatter_tensor(
|
|
tensor_to_reduce,
|
|
reduceOp="sum",
|
|
scatter_dim=shard_dim,
|
|
group=(device_mesh, 0),
|
|
)
|
|
|
|
# unpad scattered_tensor
|
|
if pad_sizes[my_rank] > 0:
|
|
scattered_tensor = unpad_tensor(
|
|
scattered_tensor, shard_dim, pad_sizes[my_rank]
|
|
)
|
|
|
|
if scattered_tensor.numel() == 0:
|
|
# We need to check numel() instead of size if a tensor is ([]) after unpadding,
|
|
# since the size could be ([0, 8]) after unpadding.
|
|
self.assertEqual(
|
|
scattered_tensor.numel(), tensor_splitted_list[my_rank].numel()
|
|
)
|
|
else:
|
|
self.assertEqual(
|
|
scattered_tensor.size(), tensor_splitted_list[my_rank].size()
|
|
)
|
|
self.assertEqual(
|
|
scattered_tensor,
|
|
torch.ones_like(tensor_splitted_list[my_rank]) * res_num,
|
|
)
|
|
|
|
@with_comms
|
|
def test_broadcast_nd(self):
|
|
mesh_tensor = torch.arange(8).reshape(2, 2, 2)
|
|
mesh = DeviceMesh(self.device_type, mesh_tensor)
|
|
local_tensor = torch.ones(3, 3, device=self.device_type) * self.rank
|
|
|
|
# check all dim groups
|
|
dim_to_subgroups = mesh.get_all_groups()
|
|
for dim, dim_group in enumerate(dim_to_subgroups):
|
|
dim_group_size = get_world_size(dim_group)
|
|
global_ranks = [
|
|
get_global_rank(dim_group, i) for i in range(dim_group_size)
|
|
]
|
|
cloned_local_tensor = local_tensor.clone()
|
|
mesh_broadcast(cloned_local_tensor, mesh, mesh_dim=dim)
|
|
res_num = global_ranks[0]
|
|
self.assertEqual(cloned_local_tensor, torch.ones(3, 3) * res_num)
|
|
|
|
@with_comms
|
|
def test_scatter_nd(self):
|
|
mesh_tensor = torch.arange(8).reshape(2, 2, 2)
|
|
mesh = DeviceMesh(self.device_type, mesh_tensor)
|
|
|
|
# check all dim groups
|
|
dim_to_subgroups = mesh.get_all_groups()
|
|
for dim, dim_group in enumerate(dim_to_subgroups):
|
|
dim_group_size = get_world_size(dim_group)
|
|
global_ranks = [
|
|
get_global_rank(dim_group, i) for i in range(dim_group_size)
|
|
]
|
|
scattered_tensors = [
|
|
torch.ones(3, 3, device=self.device_type) * global_rank
|
|
for global_rank in global_ranks
|
|
]
|
|
received_tensor = torch.empty_like(
|
|
scattered_tensors[mesh.get_coordinate()[dim]]
|
|
)
|
|
mesh_scatter(received_tensor, scattered_tensors, mesh, mesh_dim=dim)
|
|
self.assertEqual(received_tensor, torch.ones(3, 3) * self.rank)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|