pytorch/torch/csrc/jit/mobile/function.cpp
Martin Yuan 19ab5381c3 Add OPN instruction and vararg operator table (#27104)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27104

* The use case here is to replace prim::ListConstruct, which requires Node, but Node is not available in mobile lite interpreter.
* (OPN, X, N), X is the index to the vararg operator-name and operator tables. N is number of inputs. For ListConstruct example, operator name can be "aten::listconstruct" and the overloaded name is the output type ("int", "float", "bool", "tensor" and "generic").
* A vararg operator table is built with void(int input_size, Stack& stack) functions.
## Unit test
LiteInterpreterConv covers OPN instruction and conv operator.

Test Plan: Imported from OSS

Differential Revision: D17762853

fbshipit-source-id: 475aa0c6678e3760cec805862a78510913a89c83
2019-10-04 09:35:53 -07:00

94 lines
3.1 KiB
C++

#include "function.h"
#include "interpreter.h"
#include <torch/csrc/jit/instruction.h>
#include <ATen/core/op_registration/op_registration.h>
namespace torch{
namespace jit{
namespace {
template <typename dtype> // int64_t, bool, double
void listConstruct(int num_inputs, Stack& stack) {
auto inputs = peekSlice(stack, 0, num_inputs, num_inputs);
c10::List<dtype> vals =
c10::impl::toList(fmap(inputs, [](const IValue& v) { return v.to<dtype>(); }));
drop(stack, num_inputs);
push(stack, std::move(vals));
}
void tensorListConstruct(int num_inputs, Stack& stack) {
const size_t stack_size = stack.size();
c10::List<at::Tensor> vals;
vals.reserve(num_inputs);
for (size_t i = stack_size - num_inputs; i < stack_size; ++i) {
vals.emplace_back(std::move(stack[i]).toTensor());
}
drop(stack, num_inputs);
push(stack, std::move(vals));
}
}
char const * toString(OpCode op);
namespace mobile {
Function::Function(c10::QualifiedName name)
: name_(name), code_(std::make_shared<Code>()) {}
void Function::append_instruction(OpCode op, int X, int N) {
TORCH_CHECK(isOpSupportedInMobile(op), toString(op),
" is not supported in mobile module.");
code_->instructions_.emplace_back(op, X, N);
}
void Function::append_operator(const std::string& name,
const std::string& overload_name) {
// Keep the original opname in code_
code_->op_names_.emplace_back(name, overload_name);
auto opname = code_->op_names_.back();
// Add "_" prefix to work around the double registration both of jit/generated
// and here. TODO: remove it when we have separate build for lite interpreter.
opname.name = "_" + opname.name;
auto op = c10::Dispatcher::singleton().findSchema(opname);
TORCH_CHECK(op.has_value(), opname.name, ".", opname.overload_name, " cannot be found.");
code_->operators_.emplace_back(op);
}
void Function::build_vararg_operator_table() {
for (auto& ins : code_->instructions_) {
if (ins.op == OPN) {
auto opname = code_->op_names_[ins.X];
if (opname.name == "prim::ListConstruct") {
if (opname.overload_name == "int") {
code_->vararg_operators_.emplace_back(listConstruct<int64_t>);
} else if (opname.overload_name == "float") {
code_->vararg_operators_.emplace_back(listConstruct<double>);
} else if (opname.overload_name == "bool") {
code_->vararg_operators_.emplace_back(listConstruct<bool>);
} else if (opname.overload_name == "Tensor") {
code_->vararg_operators_.emplace_back(tensorListConstruct);
} else {
AT_ERROR("Type of ListConstruct is not supported.");
}
} else {
AT_ERROR("OPN operator ", opname.name, " is not supported.");
}
ins.X = code_->vararg_operators_.size() - 1;
}
}
}
void Function::append_constant(const c10::IValue& constant) {
code_->constants_.push_back(constant);
}
void Function::set_register_size(size_t size) {
code_->register_size_ = size;
}
bool Function::run(Stack& stack) const {
InterpreterState interp_state(code_);
return interp_state.run(stack);
}
} // namespace mobile
} // namespace torch
} // namespace jit