mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/75046 Merge the code needed for dynamic+ltc integration from the staging branch to the master branch. Test Plan: Unit test ``` pytest test_extract_compiled_graph ``` test thru dynamo ``` LTC_TS_CUDA=1 time python torchbench.py --speedup-ltc -dcuda --nvfuser --randomize-input --only <model name> ``` Reviewed By: alanwaketan Differential Revision: D35300646 Pulled By: shunting314 fbshipit-source-id: 09ed20d3bb8ef80e4b93ba87ea3356a07d2dccdb (cherry picked from commit 2b56771cdfd2cfa825c65ee9fd42338fb372fb32)
21 lines
722 B
Python
21 lines
722 B
Python
import torch._C._lazy
|
|
|
|
|
|
def render_ir_graph(tensors):
|
|
"""Return a text dump of the LTC IR graph in dot format for the tensors.
|
|
The text can be processed by tools like dot to be rendered in pdf,png etc."""
|
|
return torch._C._lazy._get_tensors_dot(tensors)
|
|
|
|
def dump_ir(tensors, ir_format):
|
|
"""Return a dump of the tensors in the specified format.
|
|
Valid format are
|
|
- text: for LTC IR
|
|
- backend: for the activate backend IR
|
|
"""
|
|
if ir_format == "text":
|
|
return torch._C._lazy._get_tensors_text(tensors)
|
|
elif ir_format == "backend":
|
|
return torch._C._lazy._get_tensors_backend(tensors)
|
|
else:
|
|
raise RuntimeError(f"Unrecognized IR format: {ir_format}")
|