mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/29500 Test Plan: Imported from OSS Differential Revision: D18463064 Pulled By: jamesr66a fbshipit-source-id: d37bef242a8626593d4b8754042152cfc0f0acb2
1024 lines
36 KiB
C++
1024 lines
36 KiB
C++
#include <google/protobuf/util/json_util.h>
|
|
#include <google/protobuf/util/type_resolver_util.h>
|
|
|
|
#include <torch/csrc/autograd/symbolic.h>
|
|
#include <torch/csrc/jit/export.h>
|
|
#include <torch/csrc/onnx/onnx.h>
|
|
|
|
#include <ATen/core/functional.h>
|
|
#include <c10/util/Exception.h>
|
|
#include <torch/csrc/jit/import_export_helpers.h>
|
|
#include <torch/csrc/jit/passes/dead_code_elimination.h>
|
|
#include <torch/csrc/jit/passes/python_print.h>
|
|
#include <torch/csrc/jit/pickle.h>
|
|
#include <torch/csrc/jit/source_range_serialization.h>
|
|
#include <torch/csrc/jit/instruction.h>
|
|
#include <torch/csrc/jit/passes/inliner.h>
|
|
|
|
#include <caffe2/core/types.h>
|
|
#include <caffe2/proto/caffe2_pb.h>
|
|
#include <caffe2/proto/torch_pb.h>
|
|
#include <caffe2/serialize/inline_container.h>
|
|
#include <onnx/onnx_pb.h>
|
|
|
|
#include <ATen/ATen.h>
|
|
#include <c10/util/Optional.h>
|
|
|
|
#include <fstream>
|
|
#include <memory>
|
|
#include <set>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
char const * toString(OpCode op);
|
|
|
|
namespace {
|
|
namespace onnx_torch = ::torch::onnx;
|
|
namespace onnx = ::ONNX_NAMESPACE;
|
|
|
|
namespace {
|
|
ExportModuleExtraFilesHook& GetExtraFilesHook() {
|
|
static ExportModuleExtraFilesHook func = nullptr;
|
|
return func;
|
|
};
|
|
}
|
|
|
|
class ScriptModuleSerializer;
|
|
|
|
std::string getNodeStackTraceString(const Node* n) {
|
|
return n->sourceRange().str();
|
|
}
|
|
|
|
void validateBlock(
|
|
Block* b,
|
|
onnx_torch::OperatorExportTypes operator_export_type) {
|
|
for (auto node : b->nodes()) {
|
|
for (Block* sub_block : node->blocks()) {
|
|
validateBlock(sub_block, operator_export_type);
|
|
}
|
|
// Macro'ed so we get a marginally better line number on failed export
|
|
#define FAIL_EXPORT(name) \
|
|
throw std::runtime_error( \
|
|
std::string("ONNX export failed: ") + name + \
|
|
"\n\nGraph we tried to export:\n" + b->owningGraph()->toString());
|
|
if (node->kind() == prim::PythonOp) {
|
|
auto py_node = static_cast<PythonOp*>(node);
|
|
FAIL_EXPORT(
|
|
"Couldn't export Python operator " + py_node->name() +
|
|
"\n\nDefined at:\n" + getNodeStackTraceString(node))
|
|
} else {
|
|
// Special error messages for certain types of operators
|
|
if (node->kind() == aten::expand) {
|
|
if (operator_export_type ==
|
|
onnx_torch::OperatorExportTypes::ONNX_ATEN_FALLBACK) {
|
|
WithInsertPoint guard(node);
|
|
auto* new_node =
|
|
b->owningGraph()->insertNode(b->owningGraph()->create(
|
|
Symbol(::c10::onnx::ATen),
|
|
node->inputs(),
|
|
node->outputs().size()));
|
|
for (size_t i = 0; i < node->outputs().size(); ++i) {
|
|
node->output(i)->replaceAllUsesWith(new_node->output(i));
|
|
}
|
|
new_node->s_(Symbol::fromQualString("attr::operator"), "expand");
|
|
}
|
|
}
|
|
if (node->kind() == prim::PackPadded || node->kind() == prim::PadPacked) {
|
|
FAIL_EXPORT(
|
|
"Cannot export individual pack_padded_sequence or pad_packed_sequence; these operations must occur in pairs.\n\nUsage of this operation occurred at:\n" +
|
|
getNodeStackTraceString(node));
|
|
}
|
|
bool is_aten_enabled = operator_export_type ==
|
|
onnx_torch::OperatorExportTypes::ONNX_ATEN_FALLBACK ||
|
|
operator_export_type == onnx_torch::OperatorExportTypes::ONNX_ATEN;
|
|
if (!node->kind().is_onnx() && !node->kind().is_caffe2() &&
|
|
!is_aten_enabled && !node->mustBeNone()) {
|
|
FAIL_EXPORT(
|
|
"Couldn't export operator " + node->kind().toDisplayString() +
|
|
"\n\nDefined at:\n" + getNodeStackTraceString(node));
|
|
}
|
|
}
|
|
#undef FAIL_EXPORT
|
|
}
|
|
}
|
|
|
|
void validateGraph(
|
|
const std::shared_ptr<Graph>& graph,
|
|
onnx_torch::OperatorExportTypes operator_export_type) {
|
|
validateBlock(graph->block(), operator_export_type);
|
|
// this is run on an onnx graph which doesn't have side effects.
|
|
// ignore side effects in dead code elimination.
|
|
EliminateDeadCode(graph->block(), true, DCESideEffectPolicy::ALLOW_DELETING_NODES_WITH_SIDE_EFFECTS);
|
|
}
|
|
|
|
class EncoderBase {
|
|
public:
|
|
EncoderBase(
|
|
onnx_torch::OperatorExportTypes operator_export_type,
|
|
bool strip_doc);
|
|
|
|
onnx::ModelProto get_model_proto() {
|
|
return model_proto_;
|
|
}
|
|
|
|
protected:
|
|
// Using std::map instead of std::unordered_map for initializers
|
|
// in EncodeGraph cosntructor so that the order in which initializers
|
|
// get written to the ONNX graph is always the deterministic and
|
|
// predictable. While this is not a ONNX requirement, it is needed
|
|
// for testing purposes in tests that use _export_to_pretty_string()
|
|
// for validating ONNX graphs.
|
|
void EncodeGraph(
|
|
onnx::GraphProto* graph_proto,
|
|
const std::shared_ptr<Graph>& graph,
|
|
const std::map<std::string, at::Tensor>& initializers =
|
|
std::map<std::string, at::Tensor>(),
|
|
const std::unordered_map<std::string, std::unordered_map<int64_t, std::string>>& dynamic_axes =
|
|
std::unordered_map<std::string, std::unordered_map<int64_t, std::string>>(),
|
|
bool keep_initializers_as_inputs = true);
|
|
|
|
void EncodeBlock(
|
|
onnx::GraphProto* graph_proto,
|
|
const Block* block,
|
|
const std::map<std::string, at::Tensor>& initializers =
|
|
std::map<std::string, at::Tensor>(),
|
|
const std::unordered_map<std::string, std::unordered_map<int64_t, std::string>>& dynamic_axes =
|
|
std::unordered_map<std::string, std::unordered_map<int64_t, std::string>>(),
|
|
bool keep_initializers_as_inputs = true);
|
|
|
|
virtual void EncodeTensor(
|
|
onnx::TensorProto* tensor_proto,
|
|
const at::Tensor& tensor,
|
|
const c10::optional<std::string> external_ref = {}) = 0;
|
|
|
|
virtual void EncodeIntermediateValueInfo(
|
|
onnx::GraphProto* graph_proto,
|
|
const Value* n){}
|
|
|
|
virtual void EncodeValueInfo(
|
|
onnx::GraphProto* graph_proto,
|
|
onnx::ValueInfoProto* v,
|
|
const Value* n,
|
|
const std::unordered_map<std::string, std::unordered_map<int64_t, std::string>>& dynamic_axes =
|
|
std::unordered_map<std::string, std::unordered_map<int64_t, std::string>>());
|
|
|
|
void AddAttribute(
|
|
onnx::NodeProto* node_proto,
|
|
const jit::Node* node,
|
|
const jit::Symbol name);
|
|
|
|
onnx::ModelProto model_proto_;
|
|
size_t num_blocks_;
|
|
onnx_torch::OperatorExportTypes operator_export_type_;
|
|
bool strip_doc_;
|
|
std::set<std::string> domains_;
|
|
};
|
|
|
|
onnx::TensorProto_DataType ATenTypeToOnnxType(at::ScalarType at_type) {
|
|
switch (at_type) {
|
|
case at::kDouble:
|
|
return onnx::TensorProto_DataType_DOUBLE;
|
|
case at::kFloat:
|
|
return onnx::TensorProto_DataType_FLOAT;
|
|
case at::kHalf:
|
|
return onnx::TensorProto_DataType_FLOAT16;
|
|
case at::kByte:
|
|
return onnx::TensorProto_DataType_UINT8;
|
|
case at::kChar:
|
|
return onnx::TensorProto_DataType_INT8;
|
|
case at::kShort:
|
|
return onnx::TensorProto_DataType_INT16;
|
|
case at::kInt:
|
|
return onnx::TensorProto_DataType_INT32;
|
|
case at::kLong:
|
|
return onnx::TensorProto_DataType_INT64;
|
|
case at::kBool:
|
|
return onnx::TensorProto_DataType_BOOL;
|
|
default:
|
|
AT_ERROR("unexpected tensor scalar type");
|
|
}
|
|
}
|
|
|
|
EncoderBase::EncoderBase(
|
|
onnx_torch::OperatorExportTypes operator_export_type,
|
|
bool strip_doc)
|
|
: num_blocks_(0),
|
|
operator_export_type_(operator_export_type),
|
|
strip_doc_(strip_doc) {
|
|
model_proto_.set_producer_name("pytorch");
|
|
// we pin IR version to version 4 (01/22/2019) instead of using
|
|
// onnx::IR_VERSION. with this change, the test_operators.py will be more
|
|
// stable. only bump it when it's necessary
|
|
model_proto_.set_ir_version(4);
|
|
// TODO: set the producer version using appropriate function call
|
|
model_proto_.set_producer_version("1.3");
|
|
}
|
|
|
|
void EncoderBase::EncodeValueInfo(
|
|
onnx::GraphProto* graph_proto,
|
|
onnx::ValueInfoProto* v,
|
|
const Value* n,
|
|
const std::unordered_map<std::string, std::unordered_map<int64_t, std::string>>& dynamic_axes) {
|
|
std::string name = n->debugName();
|
|
v->set_name(name);
|
|
if (TensorTypePtr node_type = n->type()->cast<TensorType>()) {
|
|
if (!node_type->isComplete()) {
|
|
return;
|
|
}
|
|
onnx::TypeProto* t = v->mutable_type();
|
|
onnx::TypeProto_Tensor* tensor_type = t->mutable_tensor_type();
|
|
onnx::TensorShapeProto* shape = tensor_type->mutable_shape();
|
|
std::vector<std::int64_t> sizes =
|
|
node_type->sizes().concrete_sizes().value();
|
|
for (size_t i = 0; i < sizes.size(); i++) {
|
|
shape->add_dim();
|
|
if ((dynamic_axes.find(name) != dynamic_axes.end()) &&
|
|
(dynamic_axes.at(name).find(i) != dynamic_axes.at(name).end())){
|
|
shape->mutable_dim(i)->set_dim_param(dynamic_axes.at(name).at(i));
|
|
}
|
|
else{
|
|
shape->mutable_dim(i)->set_dim_value(sizes[i]);
|
|
}
|
|
}
|
|
tensor_type->set_elem_type(
|
|
ATenTypeToOnnxType(node_type->scalarType().value()));
|
|
} else if (BoolTypePtr node_type = n->type()->cast<BoolType>()) {
|
|
onnx::TypeProto* t = v->mutable_type();
|
|
onnx::TypeProto_Tensor* tensor_type = t->mutable_tensor_type();
|
|
tensor_type->set_elem_type(ATenTypeToOnnxType(at::kBool));
|
|
}
|
|
}
|
|
|
|
void EncoderBase::EncodeGraph(
|
|
onnx::GraphProto* graph_proto,
|
|
const std::shared_ptr<Graph>& graph,
|
|
const std::map<std::string, at::Tensor>& initializers,
|
|
const std::unordered_map<std::string, std::unordered_map<int64_t, std::string>>& dynamic_axes,
|
|
bool keep_initializers_as_inputs) {
|
|
EncodeBlock(graph_proto, graph->block(), initializers, dynamic_axes, keep_initializers_as_inputs);
|
|
}
|
|
|
|
void EncoderBase::EncodeBlock(
|
|
onnx::GraphProto* graph_proto,
|
|
const Block* block,
|
|
const std::map<std::string, at::Tensor>& initializers,
|
|
const std::unordered_map<std::string, std::unordered_map<int64_t, std::string>>& dynamic_axes,
|
|
bool keep_initializers_as_inputs) {
|
|
AT_ASSERT(graph_proto != nullptr);
|
|
std::string block_name = "torch-jit-export";
|
|
if (num_blocks_) {
|
|
block_name += std::to_string(num_blocks_);
|
|
}
|
|
num_blocks_++;
|
|
graph_proto->set_name(block_name);
|
|
|
|
// Since ONNX IR VERSION 4, initializers do not have to
|
|
// be a subset of graph inputs. We use keep_initializers_as_inputs
|
|
// argument to determine whether to add initializers
|
|
// as inputs or not. If keep_initializers_as_inputs=false,
|
|
// we only add non-parameter inputs as inputs to ONNX graph, and.
|
|
// not the initializers (parameters). If keep_initializers_as_inputs
|
|
// =true, we add initializers as inputs too. Setting
|
|
// keep_initializers_as_inputs=false allows better
|
|
// optimizations, such as constant-folding, on ONNX graphs
|
|
// by backends/optimizers.
|
|
if (keep_initializers_as_inputs) {
|
|
for (auto input : block->inputs()) {
|
|
onnx::ValueInfoProto* v = graph_proto->add_input();
|
|
EncodeValueInfo(graph_proto, v, input, dynamic_axes);
|
|
}
|
|
}
|
|
else {
|
|
for (auto input : block->inputs()) {
|
|
auto it = initializers.find(input->debugName());
|
|
if (it == initializers.end()) {
|
|
onnx::ValueInfoProto* v = graph_proto->add_input();
|
|
EncodeValueInfo(graph_proto, v, input, dynamic_axes);
|
|
}
|
|
}
|
|
}
|
|
for (auto output : block->outputs()) {
|
|
onnx::ValueInfoProto* v = graph_proto->add_output();
|
|
EncodeValueInfo(graph_proto, v, output, dynamic_axes);
|
|
}
|
|
for (auto node : block->nodes()) {
|
|
bool is_raw_export =
|
|
operator_export_type_ == onnx_torch::OperatorExportTypes::RAW;
|
|
if (node->mustBeNone() && !is_raw_export) {
|
|
// None nodes are used to implement optional inputs. One
|
|
// way to "not provide" an optional input is to create an
|
|
// Undefined node, and pass its output as that input.
|
|
continue;
|
|
}
|
|
auto p_n = graph_proto->add_node();
|
|
if (!strip_doc_) {
|
|
p_n->set_doc_string(node->sourceRange().str());
|
|
}
|
|
for (auto input : node->inputs()) {
|
|
if (input->node()->mustBeNone() && !is_raw_export) {
|
|
p_n->add_input("");
|
|
} else {
|
|
p_n->add_input(input->debugName());
|
|
}
|
|
}
|
|
for (auto output : node->outputs()) {
|
|
p_n->add_output(output->debugName());
|
|
EncodeIntermediateValueInfo(graph_proto, output);
|
|
}
|
|
if (!node->kind().is_onnx()) {
|
|
p_n->set_domain(node->kind().domainString());
|
|
domains_.insert(node->kind().domainString());
|
|
}
|
|
if (is_raw_export) {
|
|
AT_ASSERT(!node->kind().is_onnx());
|
|
} else if (operator_export_type_ == onnx_torch::OperatorExportTypes::ONNX) {
|
|
AT_ASSERT(
|
|
!node->kind().is_aten() && !node->kind().is_prim() &&
|
|
!node->kind().is_attr());
|
|
}
|
|
p_n->set_op_type(node->kind().toUnqualString());
|
|
for (auto attr_name : node->attributeNames()) {
|
|
AddAttribute(p_n, node, attr_name);
|
|
}
|
|
if (is_raw_export && node->blocks().size() > 0) {
|
|
auto blocks = p_n->add_attribute();
|
|
blocks->set_name("_blocks");
|
|
blocks->set_type(onnx::AttributeProto_AttributeType_GRAPHS);
|
|
for (auto block : node->blocks()) {
|
|
auto graph = blocks->add_graphs();
|
|
EncodeBlock(graph, block, initializers);
|
|
}
|
|
}
|
|
if (node->kind() == ::c10::onnx::Loop) {
|
|
AT_ASSERT(node->blocks().size() == 1);
|
|
|
|
auto body = p_n->add_attribute();
|
|
body->set_name("body");
|
|
body->set_type(onnx::AttributeProto_AttributeType_GRAPH);
|
|
auto g = body->mutable_g();
|
|
EncodeBlock(g, node->blocks()[0]);
|
|
}
|
|
if (node->kind() == ::c10::onnx::If) {
|
|
AT_ASSERT(node->blocks().size() == 2);
|
|
|
|
auto true_branch = p_n->add_attribute();
|
|
true_branch->set_name("then_branch");
|
|
true_branch->set_type(onnx::AttributeProto_AttributeType_GRAPH);
|
|
auto true_g = true_branch->mutable_g();
|
|
EncodeBlock(true_g, node->blocks()[0]);
|
|
|
|
auto false_branch = p_n->add_attribute();
|
|
false_branch->set_name("else_branch");
|
|
false_branch->set_type(onnx::AttributeProto_AttributeType_GRAPH);
|
|
auto false_g = false_branch->mutable_g();
|
|
EncodeBlock(false_g, node->blocks()[1]);
|
|
}
|
|
}
|
|
AT_ASSERT(block->inputs().size() >= initializers.size());
|
|
for (auto& name_tensor_pair : initializers) {
|
|
auto p = graph_proto->add_initializer();
|
|
p->set_name(name_tensor_pair.first);
|
|
EncodeTensor(p, name_tensor_pair.second, name_tensor_pair.first);
|
|
}
|
|
}
|
|
|
|
void EncoderBase::AddAttribute(
|
|
onnx::NodeProto* node_proto,
|
|
const jit::Node* node,
|
|
const jit::Symbol name) {
|
|
auto attr = node_proto->add_attribute();
|
|
AT_ASSERT(name.is_attr());
|
|
attr->set_name(name.toUnqualString());
|
|
switch (node->kindOf(name)) {
|
|
case AttributeKind::f:
|
|
attr->set_f(node->f(name));
|
|
attr->set_type(onnx::AttributeProto_AttributeType_FLOAT);
|
|
break;
|
|
case AttributeKind::fs:
|
|
attr->set_type(onnx::AttributeProto_AttributeType_FLOATS);
|
|
for (auto& v : node->fs(name))
|
|
attr->add_floats(v);
|
|
break;
|
|
case AttributeKind::i:
|
|
attr->set_type(onnx::AttributeProto_AttributeType_INT);
|
|
attr->set_i(node->i(name));
|
|
break;
|
|
case AttributeKind::is:
|
|
attr->set_type(onnx::AttributeProto_AttributeType_INTS);
|
|
for (auto& v : node->is(name))
|
|
attr->add_ints(v);
|
|
break;
|
|
case AttributeKind::s:
|
|
attr->set_type(onnx::AttributeProto_AttributeType_STRING);
|
|
attr->set_s(node->s(name));
|
|
break;
|
|
case AttributeKind::ss:
|
|
attr->set_type(onnx::AttributeProto_AttributeType_STRINGS);
|
|
for (auto& v : node->ss(name))
|
|
attr->add_strings(v);
|
|
break;
|
|
case AttributeKind::t: {
|
|
attr->set_type(onnx::AttributeProto_AttributeType_TENSOR);
|
|
auto t = attr->mutable_t();
|
|
EncodeTensor(t, node->t(name));
|
|
} break;
|
|
case AttributeKind::ts:
|
|
attr->set_type(onnx::AttributeProto_AttributeType_TENSORS);
|
|
for (auto& v : node->ts(name)) {
|
|
auto t = attr->add_tensors();
|
|
EncodeTensor(t, v);
|
|
}
|
|
break;
|
|
case AttributeKind::g: {
|
|
attr->set_type(onnx::AttributeProto_AttributeType_GRAPH);
|
|
auto g = attr->mutable_g();
|
|
EncodeGraph(g, node->g(name));
|
|
} break;
|
|
case AttributeKind::gs:
|
|
attr->set_type(onnx::AttributeProto_AttributeType_GRAPHS);
|
|
for (auto& v : node->gs(name)) {
|
|
auto g = attr->add_graphs();
|
|
EncodeGraph(g, v);
|
|
}
|
|
break;
|
|
default:
|
|
throw std::runtime_error("unexpected attribute kind");
|
|
}
|
|
}
|
|
|
|
class GraphEncoder : public EncoderBase {
|
|
public:
|
|
GraphEncoder(
|
|
const std::shared_ptr<Graph>& graph,
|
|
int64_t onnx_opset_version,
|
|
onnx_torch::OperatorExportTypes operator_export_type,
|
|
const std::map<std::string, at::Tensor>& initializers,
|
|
const std::unordered_map<std::string, std::unordered_map<int64_t, std::string>>& dynamic_axes,
|
|
bool defer_weight_export,
|
|
bool strip_doc,
|
|
bool keep_initializers_as_inputs);
|
|
|
|
RawDataExportMap get_raw_data_export_map() {
|
|
return raw_data_export_map_;
|
|
}
|
|
|
|
private:
|
|
void EncodeTensor(
|
|
onnx::TensorProto* tensor_proto,
|
|
const at::Tensor& tensor,
|
|
const c10::optional<std::string> external_ref = {}) override;
|
|
|
|
RawDataExportMap raw_data_export_map_;
|
|
bool defer_weight_export_;
|
|
};
|
|
|
|
GraphEncoder::GraphEncoder(
|
|
const std::shared_ptr<Graph>& graph,
|
|
int64_t onnx_opset_version,
|
|
onnx_torch::OperatorExportTypes operator_export_type,
|
|
const std::map<std::string, at::Tensor>& initializers,
|
|
const std::unordered_map<std::string, std::unordered_map<int64_t, std::string>>& dynamic_axes,
|
|
bool defer_weight_export,
|
|
bool strip_doc,
|
|
bool keep_initializers_as_inputs)
|
|
: EncoderBase(operator_export_type, strip_doc),
|
|
defer_weight_export_(defer_weight_export) {
|
|
if (operator_export_type != onnx_torch::OperatorExportTypes::RAW) {
|
|
validateGraph(graph, operator_export_type);
|
|
}
|
|
|
|
auto* imp = model_proto_.add_opset_import();
|
|
// This is the version of ONNX operator set we are targeting
|
|
imp->set_version(onnx_opset_version);
|
|
|
|
EncodeGraph(model_proto_.mutable_graph(), graph, initializers, dynamic_axes, keep_initializers_as_inputs);
|
|
|
|
for (const std::string& domain : domains_) {
|
|
auto* opset = model_proto_.add_opset_import();
|
|
opset->set_domain(domain);
|
|
opset->set_version(0);
|
|
}
|
|
}
|
|
|
|
void GraphEncoder::EncodeTensor(
|
|
onnx::TensorProto* tensor_proto,
|
|
const at::Tensor& tensor,
|
|
const c10::optional<std::string> external_ref) {
|
|
for (auto d : tensor.sizes()) {
|
|
tensor_proto->add_dims(d);
|
|
}
|
|
tensor_proto->set_data_type(ATenTypeToOnnxType(tensor.scalar_type()));
|
|
// CPU's HalfTensor doesn't have contiguous(), so first calling contiguous()
|
|
auto t = tensor.contiguous().cpu();
|
|
// Add a buffer to the raw_data_export_map for the caller to dump into an
|
|
// external data store. If external_ref is not specified, we instead dump
|
|
// the contiguous data into the protobuf itself
|
|
if (defer_weight_export_ && external_ref) {
|
|
// For now, we use the name of the tensor as the external lookup name to
|
|
// avoid ONNX protobuf changes.
|
|
AT_ASSERT(external_ref.value() == tensor_proto->name());
|
|
AT_ASSERT(raw_data_export_map_.count(external_ref.value()) == 0);
|
|
raw_data_export_map_[external_ref.value()] = t;
|
|
tensor_proto->set_raw_data("__EXTERNAL");
|
|
} else {
|
|
AT_ASSERT(t.is_contiguous());
|
|
tensor_proto->set_raw_data(std::string(
|
|
static_cast<char*>(t.data_ptr()), t.element_size() * t.numel()));
|
|
}
|
|
}
|
|
|
|
class ScriptModuleSerializer {
|
|
public:
|
|
explicit ScriptModuleSerializer(const std::string& filename)
|
|
: writer_(filename) {}
|
|
|
|
explicit ScriptModuleSerializer(
|
|
const std::function<size_t(const void *, size_t)>& writer_func)
|
|
: writer_(writer_func) {}
|
|
|
|
void serialize(
|
|
const script::Module& module,
|
|
const script::ExtraFilesMap& extra_files,
|
|
bool bytecode_format) {
|
|
C10_LOG_API_USAGE_ONCE("torch.script.save");
|
|
writeExtraFiles(module, extra_files);
|
|
// Serialize the model object
|
|
writeArchive("data", module._ivalue());
|
|
// Then we werialize all code info.
|
|
writeCode(module.type());
|
|
// The tensor constants from the code are written to a separate archive
|
|
// so loading the code does not depend on loading the data
|
|
std::vector<IValue> ivalue_constants(
|
|
constant_table_.begin(), constant_table_.end());
|
|
writeArchive("constants", c10::ivalue::Tuple::create(ivalue_constants));
|
|
if (bytecode_format) {
|
|
writeByteCode(module);
|
|
}
|
|
}
|
|
|
|
private:
|
|
void writeArchive(const std::string& archive_name, const IValue& value) {
|
|
std::vector<char> data;
|
|
// Vector to capture the run-time class types during pickling the IValues
|
|
std::vector<c10::ClassTypePtr> memorizedClassTypes;
|
|
Pickler data_pickle(
|
|
[&](const char* buf, size_t size) {
|
|
data.insert(data.end(), buf, buf + size);
|
|
},
|
|
nullptr,
|
|
&memorizedClassTypes);
|
|
data_pickle.protocol();
|
|
data_pickle.pushIValue(value);
|
|
data_pickle.stop();
|
|
size_t i = 0;
|
|
std::string prefix = archive_name + "/";
|
|
for (const auto& td : data_pickle.tensorData()) {
|
|
std::string fname = prefix + std::to_string(i++);
|
|
writer_.writeRecord(fname, td.data(), td.sizeInBytes());
|
|
}
|
|
std::string fname = archive_name + ".pkl";
|
|
writer_.writeRecord(fname, data.data(), data.size());
|
|
|
|
// serialize all the captured run-time class types
|
|
for (const c10::ClassTypePtr& wroteType : memorizedClassTypes) {
|
|
convertNamedType(wroteType);
|
|
}
|
|
}
|
|
|
|
void writeExtraFiles(
|
|
const script::Module& module,
|
|
const script::ExtraFilesMap& extra_files) {
|
|
// Write out extra files.
|
|
for (const auto& kv : extra_files) {
|
|
const std::string key = "extra/" + kv.first;
|
|
writer_.writeRecord(key, kv.second.data(), kv.second.size());
|
|
}
|
|
auto hook = GetExtraFilesHook();
|
|
if (hook) {
|
|
script::ExtraFilesMap hook_files = hook(module);
|
|
for (const auto& kv : hook_files) {
|
|
const std::string key = "extra/" + kv.first;
|
|
writer_.writeRecord(key, kv.second.data(), kv.second.size());
|
|
}
|
|
}
|
|
}
|
|
|
|
void writeCode(const at::NamedTypePtr& root_type) {
|
|
class_deps_.push_back(root_type);
|
|
for (size_t i = 0; i < class_deps_.size(); ++i) {
|
|
// note: convertNameType may extend class_deps_, so re-checking
|
|
// .size() is necessary
|
|
convertNamedType(class_deps_[i]);
|
|
}
|
|
|
|
// Mapping of filename => src. We need this because multiple clases may go
|
|
// in the same file (e.g. foo.bar.Baz and foo.bar.Qux)
|
|
for (auto& item : file_streams_) {
|
|
const std::string filename = qualifierToArchivePath(item.key(), "code/");
|
|
|
|
std::string src = item.value().str();
|
|
|
|
// Only compress these records if they're not tiny.
|
|
// The cpu cost of generating zip datastructs and compressing isn't
|
|
// well-spent for very small records.
|
|
static constexpr size_t kMinToCompress = 200;
|
|
|
|
writer_.writeRecord(
|
|
filename, src.c_str(), src.size(),
|
|
src.size() > kMinToCompress /*compress*/);
|
|
|
|
// Write out the debug information
|
|
std::string debugFilename = filename + ".debug_pkl";
|
|
SourceRangePickler source_range_pickler;
|
|
auto range_data =
|
|
source_range_pickler.pickle(item.value().ranges());
|
|
writer_.writeRecord(
|
|
debugFilename,
|
|
range_data.data(),
|
|
range_data.size(),
|
|
range_data.size() > kMinToCompress /*compress*/);
|
|
}
|
|
}
|
|
|
|
void writeByteCode(const script::Module& module) {
|
|
auto methods = module.get_methods();
|
|
std::vector<c10::IValue> elements;
|
|
for (const auto& method : methods) {
|
|
const auto& func = method.function();
|
|
auto graph = func.graph()->copy();
|
|
Inline(*graph);
|
|
torch::jit::Code code(graph);
|
|
// Make a copy of opnames. Some of them may be changed for mobile later.
|
|
std::vector<c10::OperatorName> opnames;
|
|
for (size_t i = 0; i < code.instructions().size(); ++i) {
|
|
Instruction ins = code.instructions()[i];
|
|
if (ins.op == OP) {
|
|
auto node = code.instructions_source()[i];
|
|
opnames.emplace_back(node->schema().operator_name());
|
|
}
|
|
}
|
|
|
|
// instructions
|
|
std::vector<IValue> inss;
|
|
for (size_t i = 0; i < code.instructions().size(); ++i) {
|
|
Instruction ins = code.instructions()[i];
|
|
TORCH_CHECK(isOpSupportedInMobile(ins.op), toString(ins.op),
|
|
" is not supported in mobile module.");
|
|
if (ins.op == OP) {
|
|
if (opnames[ins.X].name == "prim::ListConstruct" ||
|
|
opnames[ins.X].name == "prim::TupleConstruct" ||
|
|
opnames[ins.X].name == "prim::TupleUnpack" ||
|
|
opnames[ins.X].name == "aten::format") {
|
|
auto node = code.instructions_source()[i];
|
|
ins.op = OPN;
|
|
if (opnames[ins.X].name == "prim::TupleUnpack") {
|
|
ins.N = node->outputs().size();
|
|
} else {
|
|
ins.N = node->inputs().size();
|
|
}
|
|
if (opnames[ins.X].name == "prim::ListConstruct") {
|
|
ListTypePtr lt = node->output()->type()->expect<ListType>();
|
|
if (lt->getElementType() == IntType::get()) {
|
|
opnames[ins.X].overload_name = "int";
|
|
} else if (lt->getElementType() == FloatType::get()) {
|
|
opnames[ins.X].overload_name = "float";
|
|
} else if (lt->getElementType() == BoolType::get()) {
|
|
opnames[ins.X].overload_name = "bool";
|
|
} else if (lt->getElementType()->isSubtypeOf(TensorType::get())) {
|
|
opnames[ins.X].overload_name = "Tensor";
|
|
} else {
|
|
opnames[ins.X].overload_name = "generic";
|
|
}
|
|
} else if (opnames[ins.X].name == "prim::TupleConstruct" &&
|
|
node->output()->type()->expect<TupleType>()->name().has_value()) {
|
|
AT_WARN("Named tuple is serialized as un-named tuple.");
|
|
}
|
|
}
|
|
}
|
|
std::vector<IValue> insv{toString(ins.op), ins.X, ins.N};
|
|
inss.emplace_back(c10::ivalue::Tuple::create(std::move(insv)));
|
|
}
|
|
auto instructions = c10::ivalue::Tuple::create(std::move(inss));
|
|
auto named_ins = c10::ivalue::Tuple::create({"instructions", instructions});
|
|
|
|
// operators
|
|
std::vector<IValue> opss;
|
|
for (const auto& opname : opnames) {
|
|
opss.emplace_back(c10::ivalue::Tuple::create({opname.name, opname.overload_name}));
|
|
}
|
|
auto operators = c10::ivalue::Tuple::create(std::move(opss));
|
|
auto named_ops = c10::ivalue::Tuple::create({"operators", operators});
|
|
|
|
// constants
|
|
auto constants = c10::ivalue::Tuple::create(code.constant_table());
|
|
auto named_consts = c10::ivalue::Tuple::create({"constants", constants});
|
|
|
|
// since the register location is embedded into the bytecode, pass the register size
|
|
auto named_regsize = c10::ivalue::Tuple::create({"register_size",
|
|
static_cast<int>(code.register_size())});
|
|
|
|
auto element = c10::ivalue::Tuple::create({named_ins, named_ops, named_consts, named_regsize});
|
|
elements.push_back(c10::ivalue::Tuple::create({func.qualname().qualifiedName(), element}));
|
|
}
|
|
auto telements = c10::ivalue::Tuple::create(std::move(elements));
|
|
writeArchive("bytecode", telements);
|
|
}
|
|
|
|
void convertNamedType(const c10::NamedTypePtr& class_type) {
|
|
if (converted_types_.count(class_type)) {
|
|
return;
|
|
}
|
|
converted_types_.insert(class_type);
|
|
std::string qualifier = class_type->name()->prefix();
|
|
PythonPrint* pp = file_streams_.find(qualifier);
|
|
if (!pp) {
|
|
pp = &file_streams_.insert(
|
|
qualifier,
|
|
PythonPrint(
|
|
constant_table_, class_deps_, /*enforce_importable=*/true));
|
|
pp->LEGACY_printOpVersion();
|
|
}
|
|
pp->printNamedType(class_type);
|
|
}
|
|
|
|
caffe2::serialize::PyTorchStreamWriter writer_;
|
|
std::vector<at::Tensor> constant_table_;
|
|
std::unordered_set<c10::NamedTypePtr> converted_types_;
|
|
std::vector<c10::NamedTypePtr> class_deps_;
|
|
|
|
// qualifier, e.g. '__torch__.Bar' -> PythonPrint for the file that will be
|
|
// created
|
|
OrderedDict<std::string, PythonPrint> file_streams_;
|
|
bool bytecode_format_;
|
|
};
|
|
|
|
// Pretty printing for ONNX
|
|
constexpr char indent_char = ' ';
|
|
constexpr size_t indent_multiplier = 2;
|
|
|
|
std::string idt(size_t indent) {
|
|
return std::string(indent * indent_multiplier, indent_char);
|
|
}
|
|
|
|
std::string nlidt(size_t indent) {
|
|
return std::string("\n") + idt(indent);
|
|
}
|
|
|
|
void dump(const onnx::TensorProto& tensor, std::ostream& stream) {
|
|
stream << "TensorProto shape: [";
|
|
for (int i = 0; i < tensor.dims_size(); ++i) {
|
|
stream << tensor.dims(i) << (i == tensor.dims_size() - 1 ? "" : " ");
|
|
}
|
|
stream << "]";
|
|
}
|
|
|
|
void dump(const onnx::TensorShapeProto& shape, std::ostream& stream) {
|
|
for (int i = 0; i < shape.dim_size(); ++i) {
|
|
auto& dim = shape.dim(i);
|
|
if (dim.has_dim_value()) {
|
|
stream << dim.dim_value();
|
|
} else {
|
|
stream << "?";
|
|
}
|
|
stream << (i == shape.dim_size() - 1 ? "" : " ");
|
|
}
|
|
}
|
|
|
|
void dump(const onnx::TypeProto_Tensor& tensor_type, std::ostream& stream) {
|
|
stream << "Tensor dims: ";
|
|
dump(tensor_type.shape(), stream);
|
|
}
|
|
|
|
void dump(const onnx::TypeProto& type, std::ostream& stream) {
|
|
dump(type.tensor_type(), stream);
|
|
}
|
|
|
|
void dump(const onnx::ValueInfoProto& value_info, std::ostream& stream) {
|
|
stream << "{name: \"" << value_info.name() << "\", type:";
|
|
dump(value_info.type(), stream);
|
|
stream << "}";
|
|
}
|
|
|
|
void dump(const onnx::GraphProto& graph, std::ostream& stream, size_t indent);
|
|
|
|
void dump(
|
|
const onnx::AttributeProto& attr,
|
|
std::ostream& stream,
|
|
size_t indent) {
|
|
stream << "{ name: '" << attr.name() << "', type: ";
|
|
if (attr.has_f()) {
|
|
stream << "float, value: " << attr.f();
|
|
} else if (attr.has_i()) {
|
|
stream << "int, value: " << attr.i();
|
|
} else if (attr.has_s()) {
|
|
stream << "string, value: '" << attr.s() << "'";
|
|
} else if (attr.has_g()) {
|
|
stream << "graph, value:\n";
|
|
dump(attr.g(), stream, indent + 1);
|
|
stream << nlidt(indent);
|
|
} else if (attr.has_t()) {
|
|
stream << "tensor, value:";
|
|
dump(attr.t(), stream);
|
|
} else if (attr.floats_size()) {
|
|
stream << "floats, values: [";
|
|
for (int i = 0; i < attr.floats_size(); ++i)
|
|
stream << attr.floats(i) << (i == attr.floats_size() - 1 ? "" : " ");
|
|
stream << "]";
|
|
} else if (attr.ints_size()) {
|
|
stream << "ints, values: [";
|
|
for (int i = 0; i < attr.ints_size(); ++i)
|
|
stream << attr.ints(i) << (i == attr.ints_size() - 1 ? "" : " ");
|
|
stream << "]";
|
|
} else if (attr.strings_size()) {
|
|
stream << "strings, values: [";
|
|
for (int i = 0; i < attr.strings_size(); ++i)
|
|
stream << "'" << attr.strings(i) << "'"
|
|
<< (i == attr.strings_size() - 1 ? "" : " ");
|
|
stream << "]";
|
|
} else if (attr.tensors_size()) {
|
|
stream << "tensors, values: [";
|
|
for (auto& t : attr.tensors()) {
|
|
dump(t, stream);
|
|
}
|
|
stream << "]";
|
|
} else if (attr.graphs_size()) {
|
|
stream << "graphs, values: [";
|
|
for (auto& g : attr.graphs()) {
|
|
dump(g, stream, indent + 1);
|
|
}
|
|
stream << "]";
|
|
} else {
|
|
stream << "UNKNOWN";
|
|
}
|
|
stream << "}";
|
|
}
|
|
|
|
void dump(const onnx::NodeProto& node, std::ostream& stream, size_t indent) {
|
|
stream << "Node {type: \"" << node.op_type() << "\", inputs: [";
|
|
for (int i = 0; i < node.input_size(); ++i) {
|
|
stream << node.input(i) << (i == node.input_size() - 1 ? "" : ",");
|
|
}
|
|
stream << "], outputs: [";
|
|
for (int i = 0; i < node.output_size(); ++i) {
|
|
stream << node.output(i) << (i == node.output_size() - 1 ? "" : ",");
|
|
}
|
|
stream << "], attributes: [";
|
|
for (int i = 0; i < node.attribute_size(); ++i) {
|
|
dump(node.attribute(i), stream, indent + 1);
|
|
stream << (i == node.attribute_size() - 1 ? "" : ",");
|
|
}
|
|
stream << "]}";
|
|
}
|
|
|
|
void dump(const onnx::GraphProto& graph, std::ostream& stream, size_t indent) {
|
|
stream << idt(indent) << "GraphProto {" << nlidt(indent + 1) << "name: \""
|
|
<< graph.name() << "\"" << nlidt(indent + 1) << "inputs: [";
|
|
for (int i = 0; i < graph.input_size(); ++i) {
|
|
dump(graph.input(i), stream);
|
|
stream << (i == graph.input_size() - 1 ? "" : ",");
|
|
}
|
|
stream << "]" << nlidt(indent + 1) << "outputs: [";
|
|
for (int i = 0; i < graph.output_size(); ++i) {
|
|
dump(graph.output(i), stream);
|
|
stream << (i == graph.output_size() - 1 ? "" : ",");
|
|
}
|
|
stream << "]" << nlidt(indent + 1) << "initializers: [";
|
|
for (int i = 0; i < graph.initializer_size(); ++i) {
|
|
dump(graph.initializer(i), stream);
|
|
stream << (i == graph.initializer_size() - 1 ? "" : ",");
|
|
}
|
|
stream << "]" << nlidt(indent + 1) << "nodes: [" << nlidt(indent + 2);
|
|
for (int i = 0; i < graph.node_size(); ++i) {
|
|
dump(graph.node(i), stream, indent + 2);
|
|
if (i != graph.node_size() - 1)
|
|
stream << "," << nlidt(indent + 2);
|
|
}
|
|
stream << nlidt(indent + 1) << "]\n" << idt(indent) << "}\n";
|
|
}
|
|
|
|
void dump(
|
|
const onnx::OperatorSetIdProto& operator_set_id,
|
|
std::ostream& stream) {
|
|
stream << "OperatorSetIdProto { domain: " << operator_set_id.domain() << "}";
|
|
}
|
|
|
|
void dump(const onnx::ModelProto& model, std::ostream& stream, size_t indent) {
|
|
stream << idt(indent) << "ModelProto {" << nlidt(indent + 1)
|
|
<< "producer_name: \"" << model.producer_name() << "\""
|
|
<< nlidt(indent + 1) << "domain: \"" << model.domain() << "\""
|
|
<< nlidt(indent + 1) << "doc_string: \"" << model.doc_string() << "\"";
|
|
if (model.has_graph()) {
|
|
stream << nlidt(indent + 1) << "graph:\n";
|
|
dump(model.graph(), stream, indent + 2);
|
|
}
|
|
if (model.opset_import_size()) {
|
|
stream << idt(indent + 1) << "opset_import: [";
|
|
for (auto& opset_imp : model.opset_import()) {
|
|
dump(opset_imp, stream);
|
|
}
|
|
stream << "],\n";
|
|
}
|
|
stream << idt(indent) << "}\n";
|
|
}
|
|
|
|
std::string prettyPrint(const onnx::ModelProto& model) {
|
|
std::ostringstream ss;
|
|
dump(model, ss, 0);
|
|
return ss.str();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void SetExportModuleExtraFilesHook(ExportModuleExtraFilesHook hook) {
|
|
GetExtraFilesHook() = hook;
|
|
}
|
|
|
|
std::string pretty_print_onnx(
|
|
const std::shared_ptr<Graph>& graph,
|
|
const std::map<std::string, at::Tensor>& initializers,
|
|
int64_t onnx_opset_version,
|
|
bool defer_weight_export,
|
|
::torch::onnx::OperatorExportTypes operator_export_type,
|
|
bool google_printer,
|
|
bool keep_initializers_as_inputs) {
|
|
auto graph_encoder = GraphEncoder(
|
|
graph,
|
|
onnx_opset_version,
|
|
operator_export_type,
|
|
initializers,
|
|
std::unordered_map<std::string, std::unordered_map<int64_t, std::string>>{},
|
|
defer_weight_export,
|
|
true,
|
|
keep_initializers_as_inputs);
|
|
if (google_printer) {
|
|
return graph_encoder.get_model_proto().DebugString();
|
|
}
|
|
return prettyPrint(graph_encoder.get_model_proto());
|
|
}
|
|
|
|
// export_raw_ir will export IR ops without turning them into ONNX ops.
|
|
// The output will use the ONNX protobuf format, but the ops will not
|
|
// conform to the ONNX op specification. Thus, the output will not
|
|
// be interpretable by a ONNX-compatible framework. However, PyTorch or
|
|
// libtorch will be able to import the IR and play it back.
|
|
std::tuple<std::string, RawDataExportMap> export_onnx(
|
|
const std::shared_ptr<Graph>& graph,
|
|
const std::map<std::string, at::Tensor>& initializers,
|
|
int64_t onnx_opset_version,
|
|
const std::unordered_map<std::string, std::unordered_map<std::int64_t, std::string>>& dynamic_axes,
|
|
bool defer_weight_export,
|
|
::torch::onnx::OperatorExportTypes operator_export_type,
|
|
bool strip_doc_string,
|
|
bool keep_initializers_as_inputs) {
|
|
auto graph_encoder = GraphEncoder(
|
|
graph,
|
|
onnx_opset_version,
|
|
operator_export_type,
|
|
initializers,
|
|
dynamic_axes,
|
|
defer_weight_export,
|
|
strip_doc_string,
|
|
keep_initializers_as_inputs);
|
|
return std::make_tuple(
|
|
graph_encoder.get_model_proto().SerializeAsString(),
|
|
graph_encoder.get_raw_data_export_map());
|
|
}
|
|
|
|
|
|
void ExportModule(
|
|
const script::Module& module,
|
|
std::ostream& out,
|
|
const script::ExtraFilesMap& extra_files,
|
|
bool bytecode_format) {
|
|
ScriptModuleSerializer serializer(
|
|
[&](const void* buf, size_t nbytes) -> size_t {
|
|
out.write(static_cast<const char *>(buf), nbytes);
|
|
return !out ? 0 : nbytes;
|
|
});
|
|
serializer.serialize(module, extra_files, bytecode_format);
|
|
}
|
|
|
|
void ExportModule(
|
|
const script::Module& module,
|
|
const std::string& filename,
|
|
const script::ExtraFilesMap& extra_files,
|
|
bool bytecode_format) {
|
|
ScriptModuleSerializer serializer(filename);
|
|
serializer.serialize(module, extra_files, bytecode_format);
|
|
}
|
|
|
|
void ExportModule(
|
|
const script::Module& module,
|
|
const std::function<size_t(const void*, size_t)>& writer_func,
|
|
const script::ExtraFilesMap& extra_files,
|
|
bool bytecode_format) {
|
|
ScriptModuleSerializer serializer(writer_func);
|
|
serializer.serialize(module, extra_files, bytecode_format);
|
|
}
|
|
|
|
} // namespace jit
|
|
} // namespace torch
|