mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Fixes https://github.com/pytorch/pytorch/issues/16326 Previously we didn't handle module inputs which included Generic Lists. When checking whether a generic list if a subvalue of the input arg type, I currently recurse on every element of the list. This shouldn't be too slow since the innermost list will be specialized and we won't have to check it's elements. E.g. Tensor[][] -> GenericList [TensorList ]. The error message could be improved, but extracting the complete type of nested lists would have to deal with unifying types across lists / empty lists & typevars so I'm going to save that for a follow up PR. Pull Request resolved: https://github.com/pytorch/pytorch/pull/16482 Differential Revision: D13882582 Pulled By: eellison fbshipit-source-id: 3609bc572f0ee9ebf20a77ea5ebc8fa3b165e24b |
||
|---|---|---|
| .. | ||
| any.cpp | ||
| CMakeLists.txt | ||
| dataloader.cpp | ||
| expanding-array.cpp | ||
| integration.cpp | ||
| jit.cpp | ||
| memory.cpp | ||
| misc.cpp | ||
| module.cpp | ||
| modules.cpp | ||
| optim_baseline.h | ||
| optim_baseline.py | ||
| optim.cpp | ||
| ordered_dict.cpp | ||
| parallel.cpp | ||
| README.md | ||
| rnn.cpp | ||
| sequential.cpp | ||
| serialize.cpp | ||
| static.cpp | ||
| support.h | ||
| tensor_cuda.cpp | ||
| tensor_options_cuda.cpp | ||
| tensor_options.cpp | ||
| tensor.cpp | ||
C++ Frontend Tests
In this folder live the tests for PyTorch's C++ Frontend. They use the GoogleTest test framework.
CUDA Tests
To make a test runnable only on platforms with CUDA, you should suffix your
test with _CUDA, e.g.
TEST(MyTestSuite, MyTestCase_CUDA) { }
To make it runnable only on platforms with at least two CUDA machines, suffix
it with _MultiCUDA instead of _CUDA, e.g.
TEST(MyTestSuite, MyTestCase_MultiCUDA) { }
There is logic in main.cpp that detects the availability and number of CUDA
devices and supplies the appropriate negative filters to GoogleTest.
Integration Tests
Integration tests use the MNIST dataset. You must download it by running the following command from the PyTorch root folder:
$ python tools/download_mnist.py -d test/cpp/api/mnist
The required paths will be referenced as test/cpp/api/mnist/... in the test
code, so you must run the integration tests from the PyTorch root folder.