pytorch/test/test_public_bindings.py
BowenBao 6d9432c44c [ONNX][dynamo_export] Decomposition skips using custom operator (#117314)
A context manager that disables the decomposition of certain ops during dynamo tracing.

The approach is to temporarily hijack the operator callable with PT2 custom operator.
The custom operator will not be decomposed and will show up as a single node to be exported to ONNX.

For the time being the decomposition of these ops is otherwise unavoidable.

https://github.com/pytorch/pytorch/issues/116684
https://github.com/pytorch/pytorch/issues/115883

This solution will no longer be required once the issue is resolved.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117314
Approved by: https://github.com/justinchuby, https://github.com/malfet
2024-01-18 22:19:28 +00:00

552 lines
24 KiB
Python

# Owner(s): ["module: autograd"]
from torch.testing._internal.common_utils import TestCase, run_tests, IS_JETSON, IS_WINDOWS
from torch._utils_internal import get_file_path_2
import pkgutil
import torch
import importlib
from typing import Callable
import inspect
import json
import os
import unittest
from importlib import import_module
from itertools import chain
from pathlib import Path
def _find_all_importables(pkg):
"""Find all importables in the project.
Return them in order.
"""
return sorted(
set(
chain.from_iterable(
_discover_path_importables(Path(p), pkg.__name__)
for p in pkg.__path__
),
),
)
def _discover_path_importables(pkg_pth, pkg_name):
"""Yield all importables under a given path and package.
This is like pkgutil.walk_packages, but does *not* skip over namespace
packages. Taken from https://stackoverflow.com/questions/41203765/init-py-required-for-pkgutil-walk-packages-in-python3
"""
for dir_path, _d, file_names in os.walk(pkg_pth):
pkg_dir_path = Path(dir_path)
if pkg_dir_path.parts[-1] == '__pycache__':
continue
if all(Path(_).suffix != '.py' for _ in file_names):
continue
rel_pt = pkg_dir_path.relative_to(pkg_pth)
pkg_pref = '.'.join((pkg_name, ) + rel_pt.parts)
yield from (
pkg_path
for _, pkg_path, _ in pkgutil.walk_packages(
(str(pkg_dir_path), ), prefix=f'{pkg_pref}.',
)
)
class TestPublicBindings(TestCase):
def test_no_new_bindings(self):
"""
This test aims to stop the introduction of new JIT bindings into torch._C
whose names do not start with _. Such bindings are made available as
torch.XXX, which may not be desirable.
If your change causes this test to fail, add your new binding to a relevant
submodule of torch._C, such as torch._C._jit (or other relevant submodule of
torch._C). If your binding really needs to be available as torch.XXX, add it
to torch._C and add it to the allowlist below.
If you have removed a binding, remove it from the allowlist as well.
"""
# This allowlist contains every binding in torch._C that is copied into torch at
# the time of writing. It was generated with
#
# {elem for elem in dir(torch._C) if not elem.startswith("_")}
#
torch_C_allowlist_superset = {
"AggregationType",
"AliasDb",
"AnyType",
"Argument",
"ArgumentSpec",
"AwaitType",
"autocast_decrement_nesting",
"autocast_increment_nesting",
"AVG",
"BenchmarkConfig",
"BenchmarkExecutionStats",
"Block",
"BoolType",
"BufferDict",
"StorageBase",
"CallStack",
"Capsule",
"ClassType",
"clear_autocast_cache",
"Code",
"CompilationUnit",
"CompleteArgumentSpec",
"ComplexType",
"ConcreteModuleType",
"ConcreteModuleTypeBuilder",
"cpp",
"CudaBFloat16TensorBase",
"CudaBoolTensorBase",
"CudaByteTensorBase",
"CudaCharTensorBase",
"CudaComplexDoubleTensorBase",
"CudaComplexFloatTensorBase",
"CudaDoubleTensorBase",
"CudaFloatTensorBase",
"CudaHalfTensorBase",
"CudaIntTensorBase",
"CudaLongTensorBase",
"CudaShortTensorBase",
"DeepCopyMemoTable",
"default_generator",
"DeserializationStorageContext",
"device",
"DeviceObjType",
"DictType",
"DisableTorchFunction",
"DisableTorchFunctionSubclass",
"DispatchKey",
"DispatchKeySet",
"dtype",
"EnumType",
"ErrorReport",
"ExcludeDispatchKeyGuard",
"ExecutionPlan",
"FatalError",
"FileCheck",
"finfo",
"FloatType",
"fork",
"FunctionSchema",
"Future",
"FutureType",
"Generator",
"GeneratorType",
"get_autocast_cpu_dtype",
"get_autocast_ipu_dtype",
"get_default_dtype",
"get_num_interop_threads",
"get_num_threads",
"Gradient",
"Graph",
"GraphExecutorState",
"has_cuda",
"has_cudnn",
"has_lapack",
"has_mkl",
"has_mkldnn",
"has_mps",
"has_openmp",
"has_spectral",
"iinfo",
"import_ir_module_from_buffer",
"import_ir_module",
"InferredType",
"init_num_threads",
"InterfaceType",
"IntType",
"SymFloatType",
"SymBoolType",
"SymIntType",
"IODescriptor",
"is_anomaly_enabled",
"is_anomaly_check_nan_enabled",
"is_autocast_cache_enabled",
"is_autocast_cpu_enabled",
"is_autocast_ipu_enabled",
"is_autocast_enabled",
"is_grad_enabled",
"is_inference_mode_enabled",
"JITException",
"layout",
"ListType",
"LiteScriptModule",
"LockingLogger",
"LoggerBase",
"memory_format",
"merge_type_from_type_comment",
"ModuleDict",
"Node",
"NoneType",
"NoopLogger",
"NumberType",
"OperatorInfo",
"OptionalType",
"ParameterDict",
"parse_ir",
"parse_schema",
"parse_type_comment",
"PyObjectType",
"PyTorchFileReader",
"PyTorchFileWriter",
"qscheme",
"read_vitals",
"RRefType",
"ScriptClass",
"ScriptClassFunction",
"ScriptDict",
"ScriptDictIterator",
"ScriptDictKeyIterator",
"ScriptList",
"ScriptListIterator",
"ScriptFunction",
"ScriptMethod",
"ScriptModule",
"ScriptModuleSerializer",
"ScriptObject",
"ScriptObjectProperty",
"SerializationStorageContext",
"set_anomaly_enabled",
"set_autocast_cache_enabled",
"set_autocast_cpu_dtype",
"set_autocast_ipu_dtype",
"set_autocast_cpu_enabled",
"set_autocast_ipu_enabled",
"set_autocast_enabled",
"set_flush_denormal",
"set_num_interop_threads",
"set_num_threads",
"set_vital",
"Size",
"StaticModule",
"Stream",
"StreamObjType",
"StringType",
"SUM",
"SymFloat",
"SymInt",
"TensorType",
"ThroughputBenchmark",
"TracingState",
"TupleType",
"Type",
"unify_type_list",
"UnionType",
"Use",
"Value",
'set_autocast_gpu_dtype',
'get_autocast_gpu_dtype',
"vitals_enabled",
"wait",
"Tag",
"set_autocast_xla_enabled",
"set_autocast_xla_dtype",
"get_autocast_xla_dtype",
"is_autocast_xla_enabled",
}
torch_C_bindings = {elem for elem in dir(torch._C) if not elem.startswith("_")}
# torch.TensorBase is explicitly removed in torch/__init__.py, so included here (#109940)
explicitly_removed_torch_C_bindings = {
"TensorBase",
}
torch_C_bindings = torch_C_bindings - explicitly_removed_torch_C_bindings
# Check that the torch._C bindings are all in the allowlist. Since
# bindings can change based on how PyTorch was compiled (e.g. with/without
# CUDA), the two may not be an exact match but the bindings should be
# a subset of the allowlist.
difference = torch_C_bindings.difference(torch_C_allowlist_superset)
msg = f"torch._C had bindings that are not present in the allowlist:\n{difference}"
self.assertTrue(torch_C_bindings.issubset(torch_C_allowlist_superset), msg)
@staticmethod
def _is_mod_public(modname):
split_strs = modname.split('.')
for elem in split_strs:
if elem.startswith("_"):
return False
return True
def test_modules_can_be_imported(self):
failures = []
for _, modname, _ in _discover_path_importables(str(torch.__path__), "torch"):
try:
# TODO: fix "torch/utils/model_dump/__main__.py"
# which calls sys.exit() when we try to import it
if "__main__" in modname:
continue
import_module(modname)
except Exception as e:
# Some current failures are not ImportError
failures.append((modname, type(e)))
# It is ok to add new entries here but please be careful that these modules
# do not get imported by public code.
private_allowlist = {
"torch._inductor.codegen.cuda.cuda_kernel",
"torch.onnx._internal.fx._pass",
"torch.onnx._internal.fx.analysis",
"torch.onnx._internal.fx.decomposition_skip",
"torch.onnx._internal.fx.diagnostics",
"torch.onnx._internal.fx.fx_onnx_interpreter",
"torch.onnx._internal.fx.fx_symbolic_graph_extractor",
"torch.onnx._internal.fx.onnxfunction_dispatcher",
"torch.onnx._internal.fx.op_validation",
"torch.onnx._internal.fx.passes",
"torch.onnx._internal.fx.type_utils",
"torch.testing._internal.common_distributed",
"torch.testing._internal.common_fsdp",
"torch.testing._internal.dist_utils",
"torch.testing._internal.distributed.common_state_dict",
"torch.testing._internal.distributed._shard.sharded_tensor",
"torch.testing._internal.distributed._shard.test_common",
"torch.testing._internal.distributed._tensor.common_dtensor",
"torch.testing._internal.distributed.ddp_under_dist_autograd_test",
"torch.testing._internal.distributed.distributed_test",
"torch.testing._internal.distributed.distributed_utils",
"torch.testing._internal.distributed.fake_pg",
"torch.testing._internal.distributed.multi_threaded_pg",
"torch.testing._internal.distributed.nn.api.remote_module_test",
"torch.testing._internal.distributed.pipe_with_ddp_test",
"torch.testing._internal.distributed.rpc.dist_autograd_test",
"torch.testing._internal.distributed.rpc.dist_optimizer_test",
"torch.testing._internal.distributed.rpc.examples.parameter_server_test",
"torch.testing._internal.distributed.rpc.examples.reinforcement_learning_rpc_test",
"torch.testing._internal.distributed.rpc.faulty_agent_rpc_test",
"torch.testing._internal.distributed.rpc.faulty_rpc_agent_test_fixture",
"torch.testing._internal.distributed.rpc.jit.dist_autograd_test",
"torch.testing._internal.distributed.rpc.jit.rpc_test",
"torch.testing._internal.distributed.rpc.jit.rpc_test_faulty",
"torch.testing._internal.distributed.rpc.rpc_agent_test_fixture",
"torch.testing._internal.distributed.rpc.rpc_test",
"torch.testing._internal.distributed.rpc.tensorpipe_rpc_agent_test_fixture",
"torch.testing._internal.distributed.rpc_utils",
"torch.utils.tensorboard._caffe2_graph",
"torch._inductor.codegen.cuda.cuda_template",
"torch._inductor.codegen.cuda.gemm_template",
"torch._inductor.triton_helpers",
"torch.ao.pruning._experimental.data_sparsifier.lightning.callbacks.data_sparsity",
"torch.backends._coreml.preprocess",
"torch.contrib._tensorboard_vis",
"torch.distributed._composable",
"torch.distributed._functional_collectives",
"torch.distributed._functional_collectives_impl",
"torch.distributed._shard",
"torch.distributed._sharded_tensor",
"torch.distributed._sharding_spec",
"torch.distributed._spmd.api",
"torch.distributed._spmd.batch_dim_utils",
"torch.distributed._spmd.comm_tensor",
"torch.distributed._spmd.data_parallel",
"torch.distributed._spmd.distribute",
"torch.distributed._spmd.experimental_ops",
"torch.distributed._spmd.parallel_mode",
"torch.distributed._tensor",
"torch.distributed.algorithms._checkpoint.checkpoint_wrapper",
"torch.distributed.algorithms._optimizer_overlap",
"torch.distributed.rpc._testing.faulty_agent_backend_registry",
"torch.distributed.rpc._utils",
"torch.ao.pruning._experimental.data_sparsifier.benchmarks.dlrm_utils",
"torch.ao.pruning._experimental.data_sparsifier.benchmarks.evaluate_disk_savings",
"torch.ao.pruning._experimental.data_sparsifier.benchmarks.evaluate_forward_time",
"torch.ao.pruning._experimental.data_sparsifier.benchmarks.evaluate_model_metrics",
"torch.ao.pruning._experimental.data_sparsifier.lightning.tests.test_callbacks",
"torch.csrc.jit.tensorexpr.scripts.bisect",
"torch.csrc.lazy.test_mnist",
"torch.distributed._shard.checkpoint._fsspec_filesystem",
"torch.distributed._tensor.examples.visualize_sharding_example",
"torch.distributed.checkpoint._fsspec_filesystem",
"torch.distributed.examples.memory_tracker_example",
"torch.testing._internal.distributed.rpc.fb.thrift_rpc_agent_test_fixture",
"torch.utils._cxx_pytree",
}
# No new entries should be added to this list.
# All public modules should be importable on all platforms.
public_allowlist = {
"torch.distributed.algorithms.ddp_comm_hooks",
"torch.distributed.algorithms.model_averaging.averagers",
"torch.distributed.algorithms.model_averaging.hierarchical_model_averager",
"torch.distributed.algorithms.model_averaging.utils",
"torch.distributed.checkpoint",
"torch.distributed.constants",
"torch.distributed.distributed_c10d",
"torch.distributed.elastic.agent.server",
"torch.distributed.elastic.rendezvous",
"torch.distributed.fsdp",
"torch.distributed.launch",
"torch.distributed.launcher",
"torch.distributed.nn",
"torch.distributed.nn.api.remote_module",
"torch.distributed.optim",
"torch.distributed.optim.optimizer",
"torch.distributed.pipeline.sync",
"torch.distributed.rendezvous",
"torch.distributed.rpc.api",
"torch.distributed.rpc.backend_registry",
"torch.distributed.rpc.constants",
"torch.distributed.rpc.internal",
"torch.distributed.rpc.options",
"torch.distributed.rpc.rref_proxy",
"torch.distributed.elastic.rendezvous.etcd_rendezvous",
"torch.distributed.elastic.rendezvous.etcd_rendezvous_backend",
"torch.distributed.elastic.rendezvous.etcd_store",
"torch.distributed.rpc.server_process_global_profiler",
"torch.distributed.run",
"torch.distributed.tensor.parallel",
"torch.distributed.utils",
"torch.utils.tensorboard",
}
errors = []
for mod, excep_type in failures:
if mod in public_allowlist:
# TODO: Ensure this is the right error type
continue
if mod in private_allowlist:
continue
errors.append(f"{mod} failed to import with error {excep_type}")
self.assertEqual("", "\n".join(errors))
# AttributeError: module 'torch.distributed' has no attribute '_shard'
@unittest.skipIf(IS_WINDOWS or IS_JETSON, "Distributed Attribute Error")
def test_correct_module_names(self):
'''
An API is considered public, if its `__module__` starts with `torch.`
and there is no name in `__module__` or the object itself that starts with “_”.
Each public package should either:
- (preferred) Define `__all__` and all callables and classes in there must have their
`__module__` start with the current submodule's path. Things not in `__all__` should
NOT have their `__module__` start with the current submodule.
- (for simple python-only modules) Not define `__all__` and all the elements in `dir(submod)` must have their
`__module__` that start with the current submodule.
'''
failure_list = []
with open(get_file_path_2(os.path.dirname(__file__), 'allowlist_for_publicAPI.json')) as json_file:
# no new entries should be added to this allow_dict.
# New APIs must follow the public API guidelines.
allow_dict = json.load(json_file)
# Because we want minimal modifications to the `allowlist_for_publicAPI.json`,
# we are adding the entries for the migrated modules here from the original
# locations.
for modname in allow_dict["being_migrated"]:
if modname in allow_dict:
allow_dict[allow_dict["being_migrated"][modname]] = allow_dict[modname]
def test_module(modname):
try:
if "__main__" in modname:
return
mod = importlib.import_module(modname)
except Exception:
# It is ok to ignore here as we have a test above that ensures
# this should never happen
return
if not self._is_mod_public(modname):
return
# verifies that each public API has the correct module name and naming semantics
def check_one_element(elem, modname, mod, *, is_public, is_all):
obj = getattr(mod, elem)
if not (isinstance(obj, Callable) or inspect.isclass(obj)):
return
elem_module = getattr(obj, '__module__', None)
# Only used for nice error message below
why_not_looks_public = ""
if elem_module is None:
why_not_looks_public = "because it does not have a `__module__` attribute"
# If a module is being migrated from foo.a to bar.a (that is entry {"foo": "bar"}),
# the module's starting package would be referred to as the new location even
# if there is a "from foo import a" inside the "bar.py".
modname = allow_dict["being_migrated"].get(modname, modname)
elem_modname_starts_with_mod = elem_module is not None and \
elem_module.startswith(modname) and \
'._' not in elem_module
if not why_not_looks_public and not elem_modname_starts_with_mod:
why_not_looks_public = f"because its `__module__` attribute (`{elem_module}`) is not within the " \
f"torch library or does not start with the submodule where it is defined (`{modname}`)"
# elem's name must NOT begin with an `_` and it's module name
# SHOULD start with it's current module since it's a public API
looks_public = not elem.startswith('_') and elem_modname_starts_with_mod
if not why_not_looks_public and not looks_public:
why_not_looks_public = f"because it starts with `_` (`{elem}`)"
if is_public != looks_public:
if modname in allow_dict and elem in allow_dict[modname]:
return
if is_public:
why_is_public = f"it is inside the module's (`{modname}`) `__all__`" if is_all else \
"it is an attribute that does not start with `_` on a module that " \
"does not have `__all__` defined"
fix_is_public = f"remove it from the modules's (`{modname}`) `__all__`" if is_all else \
f"either define a `__all__` for `{modname}` or add a `_` at the beginning of the name"
else:
assert is_all
why_is_public = f"it is not inside the module's (`{modname}`) `__all__`"
fix_is_public = f"add it from the modules's (`{modname}`) `__all__`"
if looks_public:
why_looks_public = "it does look public because it follows the rules from the doc above " \
"(does not start with `_` and has a proper `__module__`)."
fix_looks_public = "make its name start with `_`"
else:
why_looks_public = why_not_looks_public
if not elem_modname_starts_with_mod:
fix_looks_public = "make sure the `__module__` is properly set and points to a submodule "\
f"of `{modname}`"
else:
fix_looks_public = "remove the `_` at the beginning of the name"
failure_list.append(f"# {modname}.{elem}:")
is_public_str = "" if is_public else " NOT"
failure_list.append(f" - Is{is_public_str} public: {why_is_public}")
looks_public_str = "" if looks_public else " NOT"
failure_list.append(f" - Does{looks_public_str} look public: {why_looks_public}")
# Swap the str below to avoid having to create the NOT again
failure_list.append(" - You can do either of these two things to fix this problem:")
failure_list.append(f" - To make it{looks_public_str} public: {fix_is_public}")
failure_list.append(f" - To make it{is_public_str} look public: {fix_looks_public}")
if hasattr(mod, '__all__'):
public_api = mod.__all__
all_api = dir(mod)
for elem in all_api:
check_one_element(elem, modname, mod, is_public=elem in public_api, is_all=True)
else:
all_api = dir(mod)
for elem in all_api:
if not elem.startswith('_'):
check_one_element(elem, modname, mod, is_public=True, is_all=False)
for _, modname, _ in _discover_path_importables(str(torch.__path__), "torch"):
test_module(modname)
test_module('torch')
msg = "All the APIs below do not meet our guidelines for public API from " \
"https://github.com/pytorch/pytorch/wiki/Public-API-definition-and-documentation.\n"
msg += "Make sure that everything that is public is expected (in particular that the module " \
"has a properly populated `__all__` attribute) and that everything that is supposed to be public " \
"does look public (it does not start with `_` and has a `__module__` that is properly populated)."
msg += "\n\nFull list:\n"
msg += "\n".join(map(str, failure_list))
# empty lists are considered false in python
self.assertTrue(not failure_list, msg)
if __name__ == '__main__':
run_tests()