pytorch/torch/utils/bottleneck/__main__.py
Edward Yang 173f224570 Turn on F401: Unused import warning. (#18598)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18598
ghimport-source-id: c74597e5e7437e94a43c163cee0639b20d0d0c6a

Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18598 Turn on F401: Unused import warning.**

This was requested by someone at Facebook; this lint is turned
on for Facebook by default.  "Sure, why not."

I had to noqa a number of imports in __init__.  Hypothetically
we're supposed to use __all__ in this case, but I was too lazy
to fix it.  Left for future work.

Be careful!  flake8-2 and flake8-3 behave differently with
respect to import resolution for # type: comments.  flake8-3 will
report an import unused; flake8-2 will not.  For now, I just
noqa'd all these sites.

All the changes were done by hand.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: D14687478

fbshipit-source-id: 30d532381e914091aadfa0d2a5a89404819663e3
2019-03-30 09:01:17 -07:00

232 lines
7.1 KiB
Python

import argparse
import cProfile
import pstats
import sys
import os
import torch
from torch.autograd import profiler
from torch.utils.collect_env import get_env_info
def redirect_argv(new_argv):
sys.argv[:] = new_argv[:]
def compiled_with_cuda(sysinfo):
if sysinfo.cuda_compiled_version:
return 'compiled w/ CUDA {}'.format(sysinfo.cuda_compiled_version)
return 'not compiled w/ CUDA'
env_summary = """
--------------------------------------------------------------------------------
Environment Summary
--------------------------------------------------------------------------------
PyTorch {pytorch_version}{debug_str} {cuda_compiled}
Running with Python {py_version} and {cuda_runtime}
`{pip_version} list` truncated output:
{pip_list_output}
""".strip()
def run_env_analysis():
print('Running environment analysis...')
info = get_env_info()
result = []
debug_str = ''
if info.is_debug_build:
debug_str = ' DEBUG'
cuda_avail = ''
if info.is_cuda_available:
cuda = info.cuda_runtime_version
if cuda is not None:
cuda_avail = 'CUDA ' + cuda
else:
cuda = 'CUDA unavailable'
pip_version = info.pip_version
pip_list_output = info.pip_packages
if pip_list_output is None:
pip_list_output = 'Unable to fetch'
result = {
'debug_str': debug_str,
'pytorch_version': info.torch_version,
'cuda_compiled': compiled_with_cuda(info),
'py_version': '{}.{}'.format(sys.version_info[0], sys.version_info[1]),
'cuda_runtime': cuda_avail,
'pip_version': pip_version,
'pip_list_output': pip_list_output,
}
return env_summary.format(**result)
def run_cprofile(code, globs, launch_blocking=False):
print('Running your script with cProfile')
prof = cProfile.Profile()
prof.enable()
exec(code, globs, None)
prof.disable()
return prof
cprof_summary = """
--------------------------------------------------------------------------------
cProfile output
--------------------------------------------------------------------------------
""".strip()
def print_cprofile_summary(prof, sortby='tottime', topk=15):
result = {}
print(cprof_summary.format(**result))
cprofile_stats = pstats.Stats(prof).sort_stats(sortby)
cprofile_stats.print_stats(topk)
def run_autograd_prof(code, globs):
def run_prof(use_cuda=False):
with profiler.profile(use_cuda=use_cuda) as prof:
exec(code, globs, None)
return prof
print('Running your script with the autograd profiler...')
result = [run_prof(use_cuda=False)]
if torch.cuda.is_available():
result.append(run_prof(use_cuda=True))
else:
result.append(None)
return result
autograd_prof_summary = """
--------------------------------------------------------------------------------
autograd profiler output ({mode} mode)
--------------------------------------------------------------------------------
{description}
{cuda_warning}
{output}
""".strip()
def print_autograd_prof_summary(prof, mode, sortby='cpu_time', topk=15):
valid_sortby = ['cpu_time', 'cuda_time', 'cpu_time_total', 'cuda_time_total', 'count']
if sortby not in valid_sortby:
warn = ('WARNING: invalid sorting option for autograd profiler results: {}\n'
'Expected `cpu_time`, `cpu_time_total`, or `count`. '
'Defaulting to `cpu_time`.')
print(warn.format(autograd_prof_sortby))
sortby = 'cpu_time'
if mode == 'CUDA':
cuda_warning = ('\n\tBecause the autograd profiler uses the CUDA event API,\n'
'\tthe CUDA time column reports approximately max(cuda_time, cpu_time).\n'
'\tPlease ignore this output if your code does not use CUDA.\n')
else:
cuda_warning = ''
sorted_events = sorted(prof.function_events,
key=lambda x: getattr(x, sortby), reverse=True)
topk_events = sorted_events[:topk]
result = {
'mode': mode,
'description': 'top {} events sorted by {}'.format(topk, sortby),
'output': torch.autograd.profiler.build_table(topk_events),
'cuda_warning': cuda_warning
}
print(autograd_prof_summary.format(**result))
descript = """
`bottleneck` is a tool that can be used as an initial step for debugging
bottlenecks in your program.
It summarizes runs of your script with the Python profiler and PyTorch\'s
autograd profiler. Because your script will be profiled, please ensure that it
exits in a finite amount of time.
For more complicated uses of the profilers, please see
https://docs.python.org/3/library/profile.html and
https://pytorch.org/docs/master/autograd.html#profiler for more information.
""".strip()
def parse_args():
parser = argparse.ArgumentParser(description=descript)
parser.add_argument('scriptfile', type=str,
help='Path to the script to be run. '
'Usually run with `python path/to/script`.')
parser.add_argument('args', type=str, nargs=argparse.REMAINDER,
help='Command-line arguments to be passed to the script.')
return parser.parse_args()
def cpu_time_total(autograd_prof):
return sum([event.cpu_time_total for event in autograd_prof.function_events])
def main():
args = parse_args()
# Customizable constants.
scriptfile = args.scriptfile
scriptargs = [] if args.args is None else args.args
scriptargs.insert(0, scriptfile)
cprofile_sortby = 'tottime'
cprofile_topk = 15
autograd_prof_sortby = 'cpu_time_total'
autograd_prof_topk = 15
redirect_argv(scriptargs)
sys.path.insert(0, os.path.dirname(scriptfile))
with open(scriptfile, 'rb') as stream:
code = compile(stream.read(), scriptfile, 'exec')
globs = {
'__file__': scriptfile,
'__name__': '__main__',
'__package__': None,
'__cached__': None,
}
print(descript)
env_summary = run_env_analysis()
if torch.cuda.is_available():
torch.cuda.init()
cprofile_prof = run_cprofile(code, globs)
autograd_prof_cpu, autograd_prof_cuda = run_autograd_prof(code, globs)
print(env_summary)
print_cprofile_summary(cprofile_prof, cprofile_sortby, cprofile_topk)
if not torch.cuda.is_available():
print_autograd_prof_summary(autograd_prof_cpu, 'CPU', autograd_prof_sortby, autograd_prof_topk)
return
# Print both the result of the CPU-mode and CUDA-mode autograd profilers
# if their execution times are very different.
cuda_prof_exec_time = cpu_time_total(autograd_prof_cuda)
if len(autograd_prof_cpu.function_events) > 0:
cpu_prof_exec_time = cpu_time_total(autograd_prof_cpu)
pct_diff = (cuda_prof_exec_time - cpu_prof_exec_time) / cuda_prof_exec_time
if abs(pct_diff) > 0.05:
print_autograd_prof_summary(autograd_prof_cpu, 'CPU', autograd_prof_sortby, autograd_prof_topk)
print_autograd_prof_summary(autograd_prof_cuda, 'CUDA', autograd_prof_sortby, autograd_prof_topk)
if __name__ == '__main__':
main()