mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 00:20:18 +01:00
Ensures existing pyrefly ignores only ignore the intended error code pyrefly check lintrunner Pull Request resolved: https://github.com/pytorch/pytorch/pull/166248 Approved by: https://github.com/oulgen
109 lines
3.6 KiB
Python
109 lines
3.6 KiB
Python
# mypy: allow-untyped-defs
|
|
from typing import Optional, Union
|
|
|
|
import torch
|
|
from torch import nan, Tensor
|
|
from torch.distributions import constraints
|
|
from torch.distributions.distribution import Distribution
|
|
from torch.distributions.gamma import Gamma
|
|
from torch.distributions.utils import broadcast_all
|
|
from torch.types import _Number, _size
|
|
|
|
|
|
__all__ = ["FisherSnedecor"]
|
|
|
|
|
|
class FisherSnedecor(Distribution):
|
|
r"""
|
|
Creates a Fisher-Snedecor distribution parameterized by :attr:`df1` and :attr:`df2`.
|
|
|
|
Example::
|
|
|
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
|
>>> m = FisherSnedecor(torch.tensor([1.0]), torch.tensor([2.0]))
|
|
>>> m.sample() # Fisher-Snedecor-distributed with df1=1 and df2=2
|
|
tensor([ 0.2453])
|
|
|
|
Args:
|
|
df1 (float or Tensor): degrees of freedom parameter 1
|
|
df2 (float or Tensor): degrees of freedom parameter 2
|
|
"""
|
|
|
|
# pyrefly: ignore [bad-override]
|
|
arg_constraints = {"df1": constraints.positive, "df2": constraints.positive}
|
|
support = constraints.positive
|
|
has_rsample = True
|
|
|
|
def __init__(
|
|
self,
|
|
df1: Union[Tensor, float],
|
|
df2: Union[Tensor, float],
|
|
validate_args: Optional[bool] = None,
|
|
) -> None:
|
|
self.df1, self.df2 = broadcast_all(df1, df2)
|
|
self._gamma1 = Gamma(self.df1 * 0.5, self.df1)
|
|
self._gamma2 = Gamma(self.df2 * 0.5, self.df2)
|
|
|
|
if isinstance(df1, _Number) and isinstance(df2, _Number):
|
|
batch_shape = torch.Size()
|
|
else:
|
|
batch_shape = self.df1.size()
|
|
super().__init__(batch_shape, validate_args=validate_args)
|
|
|
|
def expand(self, batch_shape, _instance=None):
|
|
new = self._get_checked_instance(FisherSnedecor, _instance)
|
|
batch_shape = torch.Size(batch_shape)
|
|
new.df1 = self.df1.expand(batch_shape)
|
|
new.df2 = self.df2.expand(batch_shape)
|
|
new._gamma1 = self._gamma1.expand(batch_shape)
|
|
new._gamma2 = self._gamma2.expand(batch_shape)
|
|
super(FisherSnedecor, new).__init__(batch_shape, validate_args=False)
|
|
new._validate_args = self._validate_args
|
|
return new
|
|
|
|
@property
|
|
def mean(self) -> Tensor:
|
|
df2 = self.df2.clone(memory_format=torch.contiguous_format)
|
|
df2[df2 <= 2] = nan
|
|
return df2 / (df2 - 2)
|
|
|
|
@property
|
|
def mode(self) -> Tensor:
|
|
mode = (self.df1 - 2) / self.df1 * self.df2 / (self.df2 + 2)
|
|
mode[self.df1 <= 2] = nan
|
|
return mode
|
|
|
|
@property
|
|
def variance(self) -> Tensor:
|
|
df2 = self.df2.clone(memory_format=torch.contiguous_format)
|
|
df2[df2 <= 4] = nan
|
|
return (
|
|
2
|
|
* df2.pow(2)
|
|
* (self.df1 + df2 - 2)
|
|
/ (self.df1 * (df2 - 2).pow(2) * (df2 - 4))
|
|
)
|
|
|
|
def rsample(self, sample_shape: _size = torch.Size(())) -> Tensor:
|
|
shape = self._extended_shape(sample_shape)
|
|
# X1 ~ Gamma(df1 / 2, 1 / df1), X2 ~ Gamma(df2 / 2, 1 / df2)
|
|
# Y = df2 * df1 * X1 / (df1 * df2 * X2) = X1 / X2 ~ F(df1, df2)
|
|
X1 = self._gamma1.rsample(sample_shape).view(shape)
|
|
X2 = self._gamma2.rsample(sample_shape).view(shape)
|
|
tiny = torch.finfo(X2.dtype).tiny
|
|
X2.clamp_(min=tiny)
|
|
Y = X1 / X2
|
|
Y.clamp_(min=tiny)
|
|
return Y
|
|
|
|
def log_prob(self, value):
|
|
if self._validate_args:
|
|
self._validate_sample(value)
|
|
ct1 = self.df1 * 0.5
|
|
ct2 = self.df2 * 0.5
|
|
ct3 = self.df1 / self.df2
|
|
t1 = (ct1 + ct2).lgamma() - ct1.lgamma() - ct2.lgamma()
|
|
t2 = ct1 * ct3.log() + (ct1 - 1) * torch.log(value)
|
|
t3 = (ct1 + ct2) * torch.log1p(ct3 * value)
|
|
return t1 + t2 - t3
|