pytorch/caffe2/operators/sparse_normalize_op.cc
Nikita Shulga 1fcec6e72b [caffe2] Add operator schema for FP16SparseNorm (#46300)
Summary:
Fixes regression introduced by https://github.com/pytorch/pytorch/pull/45551
Also Fix signed-unsigned comparison warnings in test/cpp/tensorexpr/test_train_impl.cpp

Pull Request resolved: https://github.com/pytorch/pytorch/pull/46300

Reviewed By: walterddr

Differential Revision: D24294821

Pulled By: malfet

fbshipit-source-id: 16bffa71ec0d2d38208855223a3c5efb18414ab5
2020-10-13 18:58:23 -07:00

169 lines
5.5 KiB
C++

#include "caffe2/operators/sparse_normalize_op.h"
#include "caffe2/core/tensor.h"
#include "caffe2/utils/eigen_utils.h"
#include "caffe2/utils/cpuid.h"
#ifdef USE_FBGEMM
#include "fbgemm/FbgemmConvert.h"
#endif
namespace caffe2 {
template <>
bool SparseNormalizeOp<float, CPUContext>::RunOnDevice() {
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(
this, Input(INDICES));
}
template <>
template <typename SIndex>
bool SparseNormalizeOp<float, CPUContext>::DoRunWithType() {
const auto* indices = Input(INDICES).template data<SIndex>();
const auto* paramIn = Input(PARAM).template data<float>();
auto* paramOut = Output(OUTPUT_PARAM)->template mutable_data<float>();
const float kEps = 1e-12f;
// n: number of sparse embeddings to be normalized
auto n = Input(INDICES).numel();
if (n == 0) {
return true;
}
// embedding length, e.g. 32, 64, 128
auto block_size = Input(PARAM).size_from_dim(1);
for (int i = 0; i < n; ++i) {
auto idx = indices[i];
auto offsetIdx = idx * block_size;
ConstEigenVectorMap<float> xVec(paramIn + offsetIdx, block_size);
auto norm = xVec.template lpNorm<2>();
if (use_max_norm_ && norm <= norm_) {
continue;
}
math::Scale(
block_size,
norm_ / (norm + kEps),
paramOut + offsetIdx,
paramOut + offsetIdx,
&context_);
}
return true;
}
template <>
bool SparseNormalizeOp<c10::Half, CPUContext>::RunOnDevice() {
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(
this, Input(INDICES));
}
inline void Float16ToFloat_ref(const at::Half* in, float* out, size_t N) {
for (size_t i = 0; i < N; ++i) {
out[i] = in[i];
}
}
template <>
template <typename SIndex>
bool SparseNormalizeOp<c10::Half, CPUContext>::DoRunWithType() {
const auto* indices = Input(INDICES).template data<SIndex>();
const auto* paramIn = Input(PARAM).template data<c10::Half>();
auto* paramOut = Output(OUTPUT_PARAM)->template mutable_data<c10::Half>();
const float kEps = 1e-12f;
// n: number of sparse embeddings to be normalized
auto n = Input(INDICES).numel();
if (n == 0) {
return true;
}
// embedding length, e.g. 32, 64, 128
auto block_size = Input(PARAM).size_from_dim(1);
vector<float> row_vec_fp32(block_size);
auto out_data = row_vec_fp32.data();
for (int i = 0; i < n; ++i) {
auto idx = indices[i];
auto offsetIdx = idx * block_size;
#ifdef USE_FBGEMM
if (GetCpuId().avx2()) {
fbgemm::Float16ToFloat_avx2(
reinterpret_cast<const fbgemm::float16*>(paramIn + offsetIdx),
out_data,
block_size);
} else {
Float16ToFloat_ref(paramIn + offsetIdx, out_data, block_size);
}
#else
Float16ToFloat_ref(paramIn + offsetIdx, out_data, block_size);
#endif
ConstEigenVectorMap<float> xVec_fp32(row_vec_fp32.data(), block_size);
float norm = xVec_fp32.template lpNorm<2>();
if (use_max_norm_ && norm <= norm_) {
continue;
}
auto Y = paramOut + offsetIdx;
EigenVectorArrayMap<c10::Half>(Y, block_size) *=
static_cast<float>(norm_ / (norm + kEps));
}
return true;
}
REGISTER_CPU_OPERATOR(SparseNormalize, SparseNormalizeOp<float, CPUContext>);
OPERATOR_SCHEMA(SparseNormalize)
.NumInputs(2, 3)
.NumOutputs(1)
.Input(0, "param", "Parameters to be normalized")
.Input(1, "indices", "Sparse indices")
.Input(
2,
"grad",
"Gradient computed (optional - not used, this argument is for backwards compatibility)")
.Output(0, "output_param", "Normalized parameters")
.EnforceOneToOneInplace()
.Arg(
"use_max_norm",
"A bool variable to control whether to use max norm \
or constant norm. When use_max_norm = false, constant norm is used so that \
all the embedding vectors are scaled to have a L2 norm equals to A \
(see blow argument norm=A). If use_max_norm = true, \
max norm is used so that embedding is scaled so that its l2 norm is no larger \
than A. If an embedding's norm is less than A originally, \
the embedding is left unchanged.\
The default is True.")
.Arg("norm", "L2 norm of the embedding. The default is 1.0.")
.SetDoc(R"DOC(
Given a sparse matrix, apply max_norm or constant_norm sparse regularization.
)DOC");
SHOULD_NOT_DO_GRADIENT(SparseNormalize);
REGISTER_CPU_OPERATOR(Float16SparseNormalize, SparseNormalizeOp<c10::Half, CPUContext>);
OPERATOR_SCHEMA(Float16SparseNormalize)
.NumInputs(2, 3)
.NumOutputs(1)
.Input(0, "param", "Parameters to be normalized")
.Input(1, "indices", "Sparse indices")
.Input(
2,
"grad",
"Gradient computed (optional - not used, this argument is for backwards compatibility)")
.Output(0, "output_param", "Normalized parameters")
.EnforceOneToOneInplace()
.Arg(
"use_max_norm",
"A bool variable to control whether to use max norm \
or constant norm. When use_max_norm = false, constant norm is used so that \
all the embedding vectors are scaled to have a L2 norm equals to A \
(see blow argument norm=A). If use_max_norm = true, \
max norm is used so that embedding is scaled so that its l2 norm is no larger \
than A. If an embedding's norm is less than A originally, \
the embedding is left unchanged.\
The default is True.")
.Arg("norm", "L2 norm of the embedding. The default is 1.0.")
.SetDoc(R"DOC(
Given a sparse matrix, apply max_norm or constant_norm sparse regularization.
)DOC");
SHOULD_NOT_DO_GRADIENT(Float16SparseNormalize);
} // namespace caffe2