mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/13944 Pull Request resolved: https://github.com/pytorch/pytorch/pull/13854 Codemod generated with clangr shard mode, 25 files per diff, motivation: https://github.com/pytorch/pytorch/pull/12407 Reviewed By: ezyang Differential Revision: D13054836 fbshipit-source-id: 5de07a156687f1ee607d0450410881d9176a87a7
40 lines
1.2 KiB
C++
40 lines
1.2 KiB
C++
#include "caffe2/operators/perplexity_op.h"
|
|
|
|
namespace caffe2 {
|
|
|
|
template <>
|
|
bool PerplexityOp<float, CPUContext>::RunOnDevice() {
|
|
auto& X = Input(0);
|
|
|
|
DCHECK_EQ(X.dim(), 1);
|
|
int N = X.dim32(0);
|
|
|
|
auto* Y = Output(0, vector<int64_t>(), at::dtype<float>());
|
|
const auto* Xdata = X.data<float>();
|
|
|
|
float perplexity = 1.0;
|
|
for (int i = 0; i < N; ++i) {
|
|
perplexity *= pow(Xdata[i], -1.0/N);
|
|
}
|
|
*(Y->template mutable_data<float>()) = perplexity;
|
|
return true;
|
|
}
|
|
|
|
REGISTER_CPU_OPERATOR(Perplexity, PerplexityOp<float, CPUContext>);
|
|
|
|
OPERATOR_SCHEMA(Perplexity).NumInputs(1).NumOutputs(1)
|
|
.SetDoc(R"DOC(
|
|
Perplexity calculates how well a probability distribution predicts a sample.
|
|
Perplexity takes a 1-D tensor containing a batch of probabilities. Each value
|
|
in the tensor belongs to a different sample and represents the probability of
|
|
the model predicting the true label for that sample. The operator returns a
|
|
single (float) perplexity value for the batch.
|
|
)DOC")
|
|
.Input(0, "probabilities", "The input data as Tensor. It contains a batch of"
|
|
"true label or target probabilities")
|
|
.Output(0, "output", "The output- a single (float) perplexity value for the "
|
|
"batch");
|
|
|
|
SHOULD_NOT_DO_GRADIENT(Perplexity);
|
|
} // namespace caffe2
|