mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: - Add LeakyReLU operator to static runtime - Add LeakyReLU benchmark - Add LeakyReLU correctness test case Static Runtime ``` ------------------------------------------------------------------------------ Benchmark Time CPU Iterations ------------------------------------------------------------------------------ BM_leaky_relu/1 4092 ns 4092 ns 172331 BM_leaky_relu/8 4425 ns 4425 ns 158434 BM_leaky_relu/20 4830 ns 4830 ns 145335 BM_leaky_relu_const/1 3545 ns 3545 ns 198054 BM_leaky_relu_const/8 3825 ns 3825 ns 183074 BM_leaky_relu_const/20 4222 ns 4222 ns 165999 ``` Interpreter ``` ------------------------------------------------------------------------------ Benchmark Time CPU Iterations ------------------------------------------------------------------------------ BM_leaky_relu/1 7183 ns 7182 ns 96377 BM_leaky_relu/8 7580 ns 7580 ns 91588 BM_leaky_relu/20 8066 ns 8066 ns 87183 BM_leaky_relu_const/1 6466 ns 6466 ns 107925 BM_leaky_relu_const/8 7063 ns 7063 ns 98768 BM_leaky_relu_const/20 7380 ns 7380 ns 94564 ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/47798 Reviewed By: ezyang Differential Revision: D24927043 Pulled By: kavoor fbshipit-source-id: 69b12cc57f725f1dc8d68635788813710a74dc2b |
||
|---|---|---|
| .. | ||
| cpp/tensorexpr | ||
| distributed/ddp | ||
| fastrnns | ||
| framework_overhead_benchmark | ||
| functional_autograd_benchmark | ||
| operator_benchmark | ||
| overrides_benchmark | ||
| profiler_benchmark | ||
| record_function_benchmark | ||
| serialization | ||
| static_runtime | ||
| tensorexpr | ||
| compare-fastrnn-results.py | ||
| compare.sh | ||
| README.md | ||
| upload_scribe.py | ||
PyTorch Benchmarks
NOTE: This folder is currently work in progress.
This folder contains scripts that produce reproducible timings of various PyTorch features.
It also provides mechanisms to compare PyTorch with other frameworks.
Setup environment
Make sure you're on a machine with CUDA, torchvision, and pytorch installed. Install in the following order:
# Install torchvision. It comes with the pytorch stable release binary
conda install pytorch torchvision -c pytorch
# Install the latest pytorch master from source.
# It should supersede the installation from the release binary.
cd $PYTORCH_HOME
python setup.py build develop
# Check the pytorch installation version
python -c "import torch; print(torch.__version__)"
Benchmark List
Please refer to each subfolder to discover each benchmark suite