mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Fixes https://github.com/pytorch/pytorch/issues/42979. Pull Request resolved: https://github.com/pytorch/pytorch/pull/45689 Reviewed By: agolynski Differential Revision: D24229870 Pulled By: xuzhao9 fbshipit-source-id: 5fc87cc428170139962ab65b71cacba494d46130
784 lines
25 KiB
Python
784 lines
25 KiB
Python
import math
|
|
import numbers
|
|
import weakref
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch.distributions import constraints
|
|
from torch.distributions.utils import (_sum_rightmost, broadcast_all,
|
|
lazy_property)
|
|
from torch.nn.functional import pad
|
|
from torch.nn.functional import softplus
|
|
from typing import List
|
|
|
|
__all__ = [
|
|
'AbsTransform',
|
|
'AffineTransform',
|
|
'CatTransform',
|
|
'ComposeTransform',
|
|
'ExpTransform',
|
|
'LowerCholeskyTransform',
|
|
'PowerTransform',
|
|
'SigmoidTransform',
|
|
'TanhTransform',
|
|
'SoftmaxTransform',
|
|
'StackTransform',
|
|
'StickBreakingTransform',
|
|
'Transform',
|
|
'identity_transform',
|
|
]
|
|
|
|
|
|
class Transform(object):
|
|
"""
|
|
Abstract class for invertable transformations with computable log
|
|
det jacobians. They are primarily used in
|
|
:class:`torch.distributions.TransformedDistribution`.
|
|
|
|
Caching is useful for transforms whose inverses are either expensive or
|
|
numerically unstable. Note that care must be taken with memoized values
|
|
since the autograd graph may be reversed. For example while the following
|
|
works with or without caching::
|
|
|
|
y = t(x)
|
|
t.log_abs_det_jacobian(x, y).backward() # x will receive gradients.
|
|
|
|
However the following will error when caching due to dependency reversal::
|
|
|
|
y = t(x)
|
|
z = t.inv(y)
|
|
grad(z.sum(), [y]) # error because z is x
|
|
|
|
Derived classes should implement one or both of :meth:`_call` or
|
|
:meth:`_inverse`. Derived classes that set `bijective=True` should also
|
|
implement :meth:`log_abs_det_jacobian`.
|
|
|
|
Args:
|
|
cache_size (int): Size of cache. If zero, no caching is done. If one,
|
|
the latest single value is cached. Only 0 and 1 are supported.
|
|
|
|
Attributes:
|
|
domain (:class:`~torch.distributions.constraints.Constraint`):
|
|
The constraint representing valid inputs to this transform.
|
|
codomain (:class:`~torch.distributions.constraints.Constraint`):
|
|
The constraint representing valid outputs to this transform
|
|
which are inputs to the inverse transform.
|
|
bijective (bool): Whether this transform is bijective. A transform
|
|
``t`` is bijective iff ``t.inv(t(x)) == x`` and
|
|
``t(t.inv(y)) == y`` for every ``x`` in the domain and ``y`` in
|
|
the codomain. Transforms that are not bijective should at least
|
|
maintain the weaker pseudoinverse properties
|
|
``t(t.inv(t(x)) == t(x)`` and ``t.inv(t(t.inv(y))) == t.inv(y)``.
|
|
sign (int or Tensor): For bijective univariate transforms, this
|
|
should be +1 or -1 depending on whether transform is monotone
|
|
increasing or decreasing.
|
|
event_dim (int): Number of dimensions that are correlated together in
|
|
the transform ``event_shape``. This should be 0 for pointwise
|
|
transforms, 1 for transforms that act jointly on vectors, 2 for
|
|
transforms that act jointly on matrices, etc.
|
|
"""
|
|
bijective = False
|
|
codomain: constraints.Constraint
|
|
event_dim = 0
|
|
|
|
def __init__(self, cache_size=0):
|
|
self._cache_size = cache_size
|
|
self._inv = None
|
|
if cache_size == 0:
|
|
pass # default behavior
|
|
elif cache_size == 1:
|
|
self._cached_x_y = None, None
|
|
else:
|
|
raise ValueError('cache_size must be 0 or 1')
|
|
super(Transform, self).__init__()
|
|
|
|
@property
|
|
def inv(self):
|
|
"""
|
|
Returns the inverse :class:`Transform` of this transform.
|
|
This should satisfy ``t.inv.inv is t``.
|
|
"""
|
|
inv = None
|
|
if self._inv is not None:
|
|
inv = self._inv()
|
|
if inv is None:
|
|
inv = _InverseTransform(self)
|
|
self._inv = weakref.ref(inv)
|
|
return inv
|
|
|
|
@property
|
|
def sign(self):
|
|
"""
|
|
Returns the sign of the determinant of the Jacobian, if applicable.
|
|
In general this only makes sense for bijective transforms.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def with_cache(self, cache_size=1):
|
|
if self._cache_size == cache_size:
|
|
return self
|
|
if type(self).__init__ is Transform.__init__:
|
|
return type(self)(cache_size=cache_size)
|
|
raise NotImplementedError("{}.with_cache is not implemented".format(type(self)))
|
|
|
|
def __eq__(self, other):
|
|
return self is other
|
|
|
|
def __ne__(self, other):
|
|
# Necessary for Python2
|
|
return not self.__eq__(other)
|
|
|
|
def __call__(self, x):
|
|
"""
|
|
Computes the transform `x => y`.
|
|
"""
|
|
if self._cache_size == 0:
|
|
return self._call(x)
|
|
x_old, y_old = self._cached_x_y
|
|
if x is x_old:
|
|
return y_old
|
|
y = self._call(x)
|
|
self._cached_x_y = x, y
|
|
return y
|
|
|
|
def _inv_call(self, y):
|
|
"""
|
|
Inverts the transform `y => x`.
|
|
"""
|
|
if self._cache_size == 0:
|
|
return self._inverse(y)
|
|
x_old, y_old = self._cached_x_y
|
|
if y is y_old:
|
|
return x_old
|
|
x = self._inverse(y)
|
|
self._cached_x_y = x, y
|
|
return x
|
|
|
|
def _call(self, x):
|
|
"""
|
|
Abstract method to compute forward transformation.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def _inverse(self, y):
|
|
"""
|
|
Abstract method to compute inverse transformation.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def log_abs_det_jacobian(self, x, y):
|
|
"""
|
|
Computes the log det jacobian `log |dy/dx|` given input and output.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def __repr__(self):
|
|
return self.__class__.__name__ + '()'
|
|
|
|
|
|
class _InverseTransform(Transform):
|
|
"""
|
|
Inverts a single :class:`Transform`.
|
|
This class is private; please instead use the ``Transform.inv`` property.
|
|
"""
|
|
def __init__(self, transform):
|
|
super(_InverseTransform, self).__init__(cache_size=transform._cache_size)
|
|
self._inv = transform
|
|
|
|
@constraints.dependent_property
|
|
def domain(self):
|
|
assert self._inv is not None
|
|
return self._inv.codomain
|
|
|
|
@constraints.dependent_property
|
|
def codomain(self):
|
|
assert self._inv is not None
|
|
return self._inv.domain
|
|
|
|
@property
|
|
def bijective(self):
|
|
assert self._inv is not None
|
|
return self._inv.bijective
|
|
|
|
@property
|
|
def sign(self):
|
|
assert self._inv is not None
|
|
return self._inv.sign
|
|
|
|
@property
|
|
def event_dim(self):
|
|
assert self._inv is not None
|
|
return self._inv.event_dim
|
|
|
|
@property
|
|
def inv(self):
|
|
return self._inv
|
|
|
|
def with_cache(self, cache_size=1):
|
|
assert self._inv is not None
|
|
return self.inv.with_cache(cache_size).inv
|
|
|
|
def __eq__(self, other):
|
|
if not isinstance(other, _InverseTransform):
|
|
return False
|
|
assert self._inv is not None
|
|
return self._inv == other._inv
|
|
|
|
def __call__(self, x):
|
|
assert self._inv is not None
|
|
return self._inv._inv_call(x)
|
|
|
|
def log_abs_det_jacobian(self, x, y):
|
|
assert self._inv is not None
|
|
return -self._inv.log_abs_det_jacobian(y, x)
|
|
|
|
|
|
class ComposeTransform(Transform):
|
|
"""
|
|
Composes multiple transforms in a chain.
|
|
The transforms being composed are responsible for caching.
|
|
|
|
Args:
|
|
parts (list of :class:`Transform`): A list of transforms to compose.
|
|
cache_size (int): Size of cache. If zero, no caching is done. If one,
|
|
the latest single value is cached. Only 0 and 1 are supported.
|
|
"""
|
|
def __init__(self, parts, cache_size=0):
|
|
if cache_size:
|
|
parts = [part.with_cache(cache_size) for part in parts]
|
|
super(ComposeTransform, self).__init__(cache_size=cache_size)
|
|
self.parts = parts
|
|
|
|
def __eq__(self, other):
|
|
if not isinstance(other, ComposeTransform):
|
|
return False
|
|
return self.parts == other.parts
|
|
|
|
@constraints.dependent_property
|
|
def domain(self):
|
|
if not self.parts:
|
|
return constraints.real
|
|
return self.parts[0].domain
|
|
|
|
@constraints.dependent_property
|
|
def codomain(self):
|
|
if not self.parts:
|
|
return constraints.real
|
|
return self.parts[-1].codomain
|
|
|
|
@lazy_property
|
|
def bijective(self):
|
|
return all(p.bijective for p in self.parts)
|
|
|
|
@lazy_property
|
|
def sign(self):
|
|
sign = 1
|
|
for p in self.parts:
|
|
sign = sign * p.sign
|
|
return sign
|
|
|
|
@lazy_property
|
|
def event_dim(self):
|
|
return max(p.event_dim for p in self.parts) if self.parts else 0
|
|
|
|
@property
|
|
def inv(self):
|
|
inv = None
|
|
if self._inv is not None:
|
|
inv = self._inv()
|
|
if inv is None:
|
|
inv = ComposeTransform([p.inv for p in reversed(self.parts)])
|
|
self._inv = weakref.ref(inv)
|
|
inv._inv = weakref.ref(self)
|
|
return inv
|
|
|
|
def with_cache(self, cache_size=1):
|
|
if self._cache_size == cache_size:
|
|
return self
|
|
return ComposeTransform(self.parts, cache_size=cache_size)
|
|
|
|
def __call__(self, x):
|
|
for part in self.parts:
|
|
x = part(x)
|
|
return x
|
|
|
|
def log_abs_det_jacobian(self, x, y):
|
|
if not self.parts:
|
|
return torch.zeros_like(x)
|
|
result = 0
|
|
for part in self.parts[:-1]:
|
|
y_tmp = part(x)
|
|
result = result + _sum_rightmost(part.log_abs_det_jacobian(x, y_tmp),
|
|
self.event_dim - part.event_dim)
|
|
x = y_tmp
|
|
part = self.parts[-1]
|
|
result = result + _sum_rightmost(part.log_abs_det_jacobian(x, y),
|
|
self.event_dim - part.event_dim)
|
|
return result
|
|
|
|
def __repr__(self):
|
|
fmt_string = self.__class__.__name__ + '(\n '
|
|
fmt_string += ',\n '.join([p.__repr__() for p in self.parts])
|
|
fmt_string += '\n)'
|
|
return fmt_string
|
|
|
|
|
|
identity_transform = ComposeTransform([])
|
|
|
|
|
|
class ExpTransform(Transform):
|
|
r"""
|
|
Transform via the mapping :math:`y = \exp(x)`.
|
|
"""
|
|
domain = constraints.real
|
|
codomain = constraints.positive
|
|
bijective = True
|
|
sign = +1
|
|
|
|
def __eq__(self, other):
|
|
return isinstance(other, ExpTransform)
|
|
|
|
def _call(self, x):
|
|
return x.exp()
|
|
|
|
def _inverse(self, y):
|
|
return y.log()
|
|
|
|
def log_abs_det_jacobian(self, x, y):
|
|
return x
|
|
|
|
|
|
class PowerTransform(Transform):
|
|
r"""
|
|
Transform via the mapping :math:`y = x^{\text{exponent}}`.
|
|
"""
|
|
domain = constraints.positive
|
|
codomain = constraints.positive
|
|
bijective = True
|
|
sign = +1
|
|
|
|
def __init__(self, exponent, cache_size=0):
|
|
super(PowerTransform, self).__init__(cache_size=cache_size)
|
|
self.exponent, = broadcast_all(exponent)
|
|
|
|
def with_cache(self, cache_size=1):
|
|
if self._cache_size == cache_size:
|
|
return self
|
|
return PowerTransform(self.exponent, cache_size=cache_size)
|
|
|
|
def __eq__(self, other):
|
|
if not isinstance(other, PowerTransform):
|
|
return False
|
|
return self.exponent.eq(other.exponent).all().item()
|
|
|
|
def _call(self, x):
|
|
return x.pow(self.exponent)
|
|
|
|
def _inverse(self, y):
|
|
return y.pow(1 / self.exponent)
|
|
|
|
def log_abs_det_jacobian(self, x, y):
|
|
return (self.exponent * y / x).abs().log()
|
|
|
|
|
|
def _clipped_sigmoid(x):
|
|
finfo = torch.finfo(x.dtype)
|
|
return torch.clamp(torch.sigmoid(x), min=finfo.tiny, max=1. - finfo.eps)
|
|
|
|
|
|
class SigmoidTransform(Transform):
|
|
r"""
|
|
Transform via the mapping :math:`y = \frac{1}{1 + \exp(-x)}` and :math:`x = \text{logit}(y)`.
|
|
"""
|
|
domain = constraints.real
|
|
codomain = constraints.unit_interval
|
|
bijective = True
|
|
sign = +1
|
|
|
|
def __eq__(self, other):
|
|
return isinstance(other, SigmoidTransform)
|
|
|
|
def _call(self, x):
|
|
return _clipped_sigmoid(x)
|
|
|
|
def _inverse(self, y):
|
|
finfo = torch.finfo(y.dtype)
|
|
y = y.clamp(min=finfo.tiny, max=1. - finfo.eps)
|
|
return y.log() - (-y).log1p()
|
|
|
|
def log_abs_det_jacobian(self, x, y):
|
|
return -F.softplus(-x) - F.softplus(x)
|
|
|
|
|
|
class TanhTransform(Transform):
|
|
r"""
|
|
Transform via the mapping :math:`y = \tanh(x)`.
|
|
|
|
It is equivalent to
|
|
```
|
|
ComposeTransform([AffineTransform(0., 2.), SigmoidTransform(), AffineTransform(-1., 2.)])
|
|
```
|
|
However this might not be numerically stable, thus it is recommended to use `TanhTransform`
|
|
instead.
|
|
|
|
Note that one should use `cache_size=1` when it comes to `NaN/Inf` values.
|
|
|
|
"""
|
|
domain = constraints.real
|
|
codomain = constraints.interval(-1.0, 1.0)
|
|
bijective = True
|
|
sign = +1
|
|
|
|
def __eq__(self, other):
|
|
return isinstance(other, TanhTransform)
|
|
|
|
def _call(self, x):
|
|
return x.tanh()
|
|
|
|
def _inverse(self, y):
|
|
# We do not clamp to the boundary here as it may degrade the performance of certain algorithms.
|
|
# one should use `cache_size=1` instead
|
|
return torch.atanh(y)
|
|
|
|
def log_abs_det_jacobian(self, x, y):
|
|
# We use a formula that is more numerically stable, see details in the following link
|
|
# https://github.com/tensorflow/probability/blob/master/tensorflow_probability/python/bijectors/tanh.py#L69-L80
|
|
return 2. * (math.log(2.) - x - softplus(-2. * x))
|
|
|
|
|
|
class AbsTransform(Transform):
|
|
r"""
|
|
Transform via the mapping :math:`y = |x|`.
|
|
"""
|
|
domain = constraints.real
|
|
codomain = constraints.positive
|
|
|
|
def __eq__(self, other):
|
|
return isinstance(other, AbsTransform)
|
|
|
|
def _call(self, x):
|
|
return x.abs()
|
|
|
|
def _inverse(self, y):
|
|
return y
|
|
|
|
|
|
class AffineTransform(Transform):
|
|
r"""
|
|
Transform via the pointwise affine mapping :math:`y = \text{loc} + \text{scale} \times x`.
|
|
|
|
Args:
|
|
loc (Tensor or float): Location parameter.
|
|
scale (Tensor or float): Scale parameter.
|
|
event_dim (int): Optional size of `event_shape`. This should be zero
|
|
for univariate random variables, 1 for distributions over vectors,
|
|
2 for distributions over matrices, etc.
|
|
"""
|
|
domain = constraints.real
|
|
codomain = constraints.real
|
|
bijective = True
|
|
|
|
def __init__(self, loc, scale, event_dim=0, cache_size=0):
|
|
super(AffineTransform, self).__init__(cache_size=cache_size)
|
|
self.loc = loc
|
|
self.scale = scale
|
|
self.event_dim = event_dim
|
|
|
|
def with_cache(self, cache_size=1):
|
|
if self._cache_size == cache_size:
|
|
return self
|
|
return AffineTransform(self.loc, self.scale, self.event_dim, cache_size=cache_size)
|
|
|
|
def __eq__(self, other):
|
|
if not isinstance(other, AffineTransform):
|
|
return False
|
|
|
|
if isinstance(self.loc, numbers.Number) and isinstance(other.loc, numbers.Number):
|
|
if self.loc != other.loc:
|
|
return False
|
|
else:
|
|
if not (self.loc == other.loc).all().item():
|
|
return False
|
|
|
|
if isinstance(self.scale, numbers.Number) and isinstance(other.scale, numbers.Number):
|
|
if self.scale != other.scale:
|
|
return False
|
|
else:
|
|
if not (self.scale == other.scale).all().item():
|
|
return False
|
|
|
|
return True
|
|
|
|
@property
|
|
def sign(self):
|
|
if isinstance(self.scale, numbers.Real):
|
|
return 1 if float(self.scale) > 0 else -1 if float(self.scale) < 0 else 0
|
|
return self.scale.sign()
|
|
|
|
def _call(self, x):
|
|
return self.loc + self.scale * x
|
|
|
|
def _inverse(self, y):
|
|
return (y - self.loc) / self.scale
|
|
|
|
def log_abs_det_jacobian(self, x, y):
|
|
shape = x.shape
|
|
scale = self.scale
|
|
if isinstance(scale, numbers.Real):
|
|
result = torch.full_like(x, math.log(abs(scale)))
|
|
else:
|
|
result = torch.abs(scale).log()
|
|
if self.event_dim:
|
|
result_size = result.size()[:-self.event_dim] + (-1,)
|
|
result = result.view(result_size).sum(-1)
|
|
shape = shape[:-self.event_dim]
|
|
return result.expand(shape)
|
|
|
|
|
|
class SoftmaxTransform(Transform):
|
|
r"""
|
|
Transform from unconstrained space to the simplex via :math:`y = \exp(x)` then
|
|
normalizing.
|
|
|
|
This is not bijective and cannot be used for HMC. However this acts mostly
|
|
coordinate-wise (except for the final normalization), and thus is
|
|
appropriate for coordinate-wise optimization algorithms.
|
|
"""
|
|
domain = constraints.real
|
|
codomain = constraints.simplex
|
|
event_dim = 1
|
|
|
|
def __eq__(self, other):
|
|
return isinstance(other, SoftmaxTransform)
|
|
|
|
def _call(self, x):
|
|
logprobs = x
|
|
probs = (logprobs - logprobs.max(-1, True)[0]).exp()
|
|
return probs / probs.sum(-1, True)
|
|
|
|
def _inverse(self, y):
|
|
probs = y
|
|
return probs.log()
|
|
|
|
|
|
class StickBreakingTransform(Transform):
|
|
"""
|
|
Transform from unconstrained space to the simplex of one additional
|
|
dimension via a stick-breaking process.
|
|
|
|
This transform arises as an iterated sigmoid transform in a stick-breaking
|
|
construction of the `Dirichlet` distribution: the first logit is
|
|
transformed via sigmoid to the first probability and the probability of
|
|
everything else, and then the process recurses.
|
|
|
|
This is bijective and appropriate for use in HMC; however it mixes
|
|
coordinates together and is less appropriate for optimization.
|
|
"""
|
|
domain = constraints.real
|
|
codomain = constraints.simplex
|
|
bijective = True
|
|
event_dim = 1
|
|
|
|
def __eq__(self, other):
|
|
return isinstance(other, StickBreakingTransform)
|
|
|
|
def _call(self, x):
|
|
offset = x.shape[-1] + 1 - x.new_ones(x.shape[-1]).cumsum(-1)
|
|
z = _clipped_sigmoid(x - offset.log())
|
|
z_cumprod = (1 - z).cumprod(-1)
|
|
y = pad(z, [0, 1], value=1) * pad(z_cumprod, [1, 0], value=1)
|
|
return y
|
|
|
|
def _inverse(self, y):
|
|
y_crop = y[..., :-1]
|
|
offset = y.shape[-1] - y.new_ones(y_crop.shape[-1]).cumsum(-1)
|
|
sf = 1 - y_crop.cumsum(-1)
|
|
# we clamp to make sure that sf is positive which sometimes does not
|
|
# happen when y[-1] ~ 0 or y[:-1].sum() ~ 1
|
|
sf = torch.clamp(sf, min=torch.finfo(y.dtype).tiny)
|
|
x = y_crop.log() - sf.log() + offset.log()
|
|
return x
|
|
|
|
def log_abs_det_jacobian(self, x, y):
|
|
offset = x.shape[-1] + 1 - x.new_ones(x.shape[-1]).cumsum(-1)
|
|
x = x - offset.log()
|
|
# use the identity 1 - sigmoid(x) = exp(-x) * sigmoid(x)
|
|
detJ = (-x + F.logsigmoid(x) + y[..., :-1].log()).sum(-1)
|
|
return detJ
|
|
|
|
|
|
class LowerCholeskyTransform(Transform):
|
|
"""
|
|
Transform from unconstrained matrices to lower-triangular matrices with
|
|
nonnegative diagonal entries.
|
|
|
|
This is useful for parameterizing positive definite matrices in terms of
|
|
their Cholesky factorization.
|
|
"""
|
|
domain = constraints.real
|
|
codomain = constraints.lower_cholesky
|
|
event_dim = 2
|
|
|
|
def __eq__(self, other):
|
|
return isinstance(other, LowerCholeskyTransform)
|
|
|
|
def _call(self, x):
|
|
return x.tril(-1) + x.diagonal(dim1=-2, dim2=-1).exp().diag_embed()
|
|
|
|
def _inverse(self, y):
|
|
return y.tril(-1) + y.diagonal(dim1=-2, dim2=-1).log().diag_embed()
|
|
|
|
|
|
class CatTransform(Transform):
|
|
tseq: List[numbers.Number]
|
|
"""
|
|
Transform functor that applies a sequence of transforms `tseq`
|
|
component-wise to each submatrix at `dim`, of length `lengths[dim]`,
|
|
in a way compatible with :func:`torch.cat`.
|
|
|
|
Example::
|
|
x0 = torch.cat([torch.range(1, 10), torch.range(1, 10)], dim=0)
|
|
x = torch.cat([x0, x0], dim=0)
|
|
t0 = CatTransform([ExpTransform(), identity_transform], dim=0, lengths=[10, 10])
|
|
t = CatTransform([t0, t0], dim=0, lengths=[20, 20])
|
|
y = t(x)
|
|
"""
|
|
def __init__(self, tseq, dim=0, lengths=None, cache_size=0):
|
|
assert all(isinstance(t, Transform) for t in tseq)
|
|
if cache_size:
|
|
tseq = [t.with_cache(cache_size) for t in tseq]
|
|
super(CatTransform, self).__init__(cache_size=cache_size)
|
|
self.transforms = list(tseq)
|
|
if lengths is None:
|
|
lengths = [1] * len(self.transforms)
|
|
self.lengths = list(lengths)
|
|
assert len(self.lengths) == len(self.transforms)
|
|
self.dim = dim
|
|
|
|
@lazy_property
|
|
def length(self):
|
|
return sum(self.lengths)
|
|
|
|
def with_cache(self, cache_size=1):
|
|
if self._cache_size == cache_size:
|
|
return self
|
|
return CatTransform(self.tseq, self.dim, self.lengths, cache_size)
|
|
|
|
def _call(self, x):
|
|
assert -x.dim() <= self.dim < x.dim()
|
|
assert x.size(self.dim) == self.length
|
|
yslices = []
|
|
start = 0
|
|
for trans, length in zip(self.transforms, self.lengths):
|
|
xslice = x.narrow(self.dim, start, length)
|
|
yslices.append(trans(xslice))
|
|
start = start + length # avoid += for jit compat
|
|
return torch.cat(yslices, dim=self.dim)
|
|
|
|
def _inverse(self, y):
|
|
assert -y.dim() <= self.dim < y.dim()
|
|
assert y.size(self.dim) == self.length
|
|
xslices = []
|
|
start = 0
|
|
for trans, length in zip(self.transforms, self.lengths):
|
|
yslice = y.narrow(self.dim, start, length)
|
|
xslices.append(trans.inv(yslice))
|
|
start = start + length # avoid += for jit compat
|
|
return torch.cat(xslices, dim=self.dim)
|
|
|
|
def log_abs_det_jacobian(self, x, y):
|
|
assert -x.dim() <= self.dim < x.dim()
|
|
assert x.size(self.dim) == self.length
|
|
assert -y.dim() <= self.dim < y.dim()
|
|
assert y.size(self.dim) == self.length
|
|
logdetjacs = []
|
|
start = 0
|
|
for trans, length in zip(self.transforms, self.lengths):
|
|
xslice = x.narrow(self.dim, start, length)
|
|
yslice = y.narrow(self.dim, start, length)
|
|
logdetjacs.append(trans.log_abs_det_jacobian(xslice, yslice))
|
|
start = start + length # avoid += for jit compat
|
|
return torch.cat(logdetjacs, dim=self.dim)
|
|
|
|
@property
|
|
def bijective(self):
|
|
return all(t.bijective for t in self.transforms)
|
|
|
|
@constraints.dependent_property
|
|
def domain(self):
|
|
return constraints.cat([t.domain for t in self.transforms],
|
|
self.dim, self.lengths)
|
|
|
|
@constraints.dependent_property
|
|
def codomain(self):
|
|
return constraints.cat([t.codomain for t in self.transforms],
|
|
self.dim, self.lengths)
|
|
|
|
|
|
class StackTransform(Transform):
|
|
"""
|
|
Transform functor that applies a sequence of transforms `tseq`
|
|
component-wise to each submatrix at `dim`
|
|
in a way compatible with :func:`torch.stack`.
|
|
|
|
Example::
|
|
x = torch.stack([torch.range(1, 10), torch.range(1, 10)], dim=1)
|
|
t = StackTransform([ExpTransform(), identity_transform], dim=1)
|
|
y = t(x)
|
|
"""
|
|
def __init__(self, tseq, dim=0, cache_size=0):
|
|
assert all(isinstance(t, Transform) for t in tseq)
|
|
if cache_size:
|
|
tseq = [t.with_cache(cache_size) for t in tseq]
|
|
super(StackTransform, self).__init__(cache_size=cache_size)
|
|
self.transforms = list(tseq)
|
|
self.dim = dim
|
|
|
|
def with_cache(self, cache_size=1):
|
|
if self._cache_size == cache_size:
|
|
return self
|
|
return StackTransform(self.transforms, self.dim, cache_size)
|
|
|
|
def _slice(self, z):
|
|
return [z.select(self.dim, i) for i in range(z.size(self.dim))]
|
|
|
|
def _call(self, x):
|
|
assert -x.dim() <= self.dim < x.dim()
|
|
assert x.size(self.dim) == len(self.transforms)
|
|
yslices = []
|
|
for xslice, trans in zip(self._slice(x), self.transforms):
|
|
yslices.append(trans(xslice))
|
|
return torch.stack(yslices, dim=self.dim)
|
|
|
|
def _inverse(self, y):
|
|
assert -y.dim() <= self.dim < y.dim()
|
|
assert y.size(self.dim) == len(self.transforms)
|
|
xslices = []
|
|
for yslice, trans in zip(self._slice(y), self.transforms):
|
|
xslices.append(trans.inv(yslice))
|
|
return torch.stack(xslices, dim=self.dim)
|
|
|
|
def log_abs_det_jacobian(self, x, y):
|
|
assert -x.dim() <= self.dim < x.dim()
|
|
assert x.size(self.dim) == len(self.transforms)
|
|
assert -y.dim() <= self.dim < y.dim()
|
|
assert y.size(self.dim) == len(self.transforms)
|
|
logdetjacs = []
|
|
yslices = self._slice(y)
|
|
xslices = self._slice(x)
|
|
for xslice, yslice, trans in zip(xslices, yslices, self.transforms):
|
|
logdetjacs.append(trans.log_abs_det_jacobian(xslice, yslice))
|
|
return torch.stack(logdetjacs, dim=self.dim)
|
|
|
|
@property
|
|
def bijective(self):
|
|
return all(t.bijective for t in self.transforms)
|
|
|
|
@constraints.dependent_property
|
|
def domain(self):
|
|
return constraints.stack([t.domain for t in self.transforms], self.dim)
|
|
|
|
@constraints.dependent_property
|
|
def codomain(self):
|
|
return constraints.stack([t.codomain for t in self.transforms], self.dim)
|