pytorch/caffe2/python/pybind_state_hip.cc
Jerry Zhang 3ea5a9a66d Remove PythonOp non-CPU path and PytorchOp (#15417)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15417

Right now the way we test whether Blob contains a CPU tensor is broken in ```PythonOpBase``` is broken, which means non-CPU path might never be taken.
Searching through the codebase, non-gpu path is used in PythonDLPack, and it is used in PytorchOp which is unused. So we'll remove non-gpu path in this diff.

Reviewed By: dzhulgakov

Differential Revision: D13495011

fbshipit-source-id: 9fe9537f05026d2a2cf7051efa81d184de722710
2019-01-02 16:36:37 -08:00

93 lines
2.7 KiB
C++

#define NO_IMPORT_ARRAY
#include "pybind_state.h"
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include "caffe2/core/hip/common_miopen.h"
#include "caffe2/core/hip/context_gpu.h"
#include "caffe2/operators/hip/operator_fallback_gpu.h"
#include "caffe2/python/pybind_state_registry.h"
namespace caffe2 {
namespace python {
REGISTER_HIP_OPERATOR(Python, GPUFallbackOp);
REGISTER_HIP_OPERATOR(
PythonGradient,
GPUFallbackOp);
REGISTER_HIP_OPERATOR(PythonDLPack, GPUFallbackOp);
REGISTER_HIP_OPERATOR(PythonDLPackGradient, GPUFallbackOp);
REGISTER_BLOB_FEEDER(HIP, TensorFeeder<HIPContext>);
namespace py = pybind11;
void addHIPGlobalMethods(py::module& m) {
m.def("num_hip_devices", &NumHipDevices);
m.def("get_hip_version", &HipVersion);
m.def("get_miopen_version", &miopenCompiledVersion);
m.def("get_hip_peer_access_pattern", []() {
std::vector<std::vector<bool>> pattern;
CAFFE_ENFORCE(caffe2::GetHipPeerAccessPattern(&pattern));
return pattern;
});
m.def("get_device_properties", [](int deviceid) {
auto& prop = GetDeviceProperty(deviceid);
std::map<std::string, py::object> obj;
obj["name"] = py::cast(prop.name);
obj["major"] = py::cast(prop.major);
obj["minor"] = py::cast(prop.minor);
return obj;
});
};
void addHIPObjectMethods(py::module& m) {
py::class_<DLPackWrapper<HIPContext>>(m, "DLPackTensorHIP")
.def_property_readonly(
"data",
[](DLPackWrapper<HIPContext>* t) -> py::object {
CAFFE_ENFORCE_EQ(
t->device_option.device_type(),
PROTO_HIP,
"Expected HIP device option for HIP tensor");
return t->data();
},
"Return DLPack tensor with tensor's data.")
.def(
"feed",
[](DLPackWrapper<HIPContext>* t, py::object obj) {
CAFFE_ENFORCE_EQ(
t->device_option.device_type(),
PROTO_HIP,
"Expected HIP device option for HIP tensor");
t->feed(obj);
},
"Copy data from given DLPack tensor into this tensor.")
.def_property_readonly(
"_shape",
[](const DLPackWrapper<HIPContext>& t) { return t.tensor->dims(); })
.def(
"_reshape",
[](DLPackWrapper<HIPContext>* t, std::vector<int64_t> dims) {
t->tensor->Resize(dims);
});
}
PYBIND11_MODULE(caffe2_pybind11_state_hip, m) {
m.doc() = "pybind11 stateful interface to Caffe2 workspaces - GPU edition";
addGlobalMethods(m);
addHIPGlobalMethods(m);
addObjectMethods(m);
addHIPObjectMethods(m);
for (const auto& addition : PybindAdditionRegistry()->Keys()) {
PybindAdditionRegistry()->Create(addition, m);
}
}
} // namespace python
} // namespace caffe2