pytorch/torch/ao/quantization/experimental/quantizer.py
asl3 13ad4739a6 [quant] Implement PTQ for APoT FakeQuant (#81040)
### Summary:
This PR implements PTQ for APoT FakeQuant. It runs models (Resnet-18 pre-trained model, ImageNet dataset) to compare accuracy metrics for different qconfig settings of uniform vs. APoT quantized activation and weight.

According to the collected accuracy stats, model #2 (uniform activation and APoT weight) appears to have a slight improvement in accuracy compared to model #1 (uniform activation and uniform weight) for 8-bit and significant improvement for 4-bit (see "Accuracy Stats" section below).

### Test Plan:
Run models with: `python test/quantization/core/experimental/fx_graph_mode_apot.py`

### Accuracy Stats:
8-bit (Uniform int8, APoT b = 8 k = 2)

**Model #1:** Uniform activation, uniform weight (FX Graph Mode quantized)
Evaluation accuracy on test dataset: 64.43% (Top-1), 85.62% (Top-5)

**Model #2:** Uniform activation, APoT weight (FX Graph Mode quantized)
Evaluation accuracy on test dataset: 64.51% (Top-1), 85.78% (Top-5)

**Model #3:** APoT activation, APoT weight (FX Graph Mode quantized)
Evaluation accuracy on test dataset: 64.32% (Top-1), 85.78% (Top-5)

4-bit (Uniform int4, APoT b = 4 k = 2)

**Model #1:** Uniform activation, uniform weight (FX Graph Mode quantized)
Evaluation accuracy on test dataset: 45.63% (Top-1), 71.96% (Top-5)

**Model #2:** Uniform activation, APoT weight (FX Graph Mode quantized)
Evaluation accuracy on test dataset: 64.24% (Top-1), 85.56% (Top-5)

**Model #3:** APoT activation, APoT weight (FX Graph Mode quantized)
Evaluation accuracy on test dataset: 45.40% (Top-1), 76.21% (Top-5)

**Full Precision model (FX Graph Mode quantized)**
Evaluation accuracy on test dataset: 69.76% (Top-1), 89.08% (Top-5)

**Eager mode quantized model**
Evaluation accuracy on test dataset: 69.49% (Top-1), 88.90% (Top-5)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81040
Approved by: https://github.com/jerryzh168
2022-07-28 07:21:31 +00:00

137 lines
5.5 KiB
Python

import torch
from torch import Tensor
import numpy as np
from torch.ao.quantization.experimental.apot_utils import float_to_apot, apot_to_float, quant_dequant_util
# class to store APoT quantizer and
# implement quantize and dequantize
class APoTQuantizer():
alpha: torch.Tensor
gamma: torch.Tensor
quantization_levels: torch.Tensor
level_indices: torch.Tensor
def __init__(
self,
alpha: torch.Tensor,
gamma: torch.Tensor,
quantization_levels: torch.Tensor,
level_indices: torch.Tensor) -> None:
self.alpha = alpha
self.gamma = gamma
self.quantization_levels = quantization_levels
self.level_indices = level_indices
r""" Quantizes fp Tensor to integer APoT representation.
Conversion is based on the qparams from a specified APoT non-uniform observer.
The approach follows the method outlined in the APoT paper: https://arxiv.org/pdf/1909.13144.pdf.
Args:
tensor2quantize: fp Tensor
Returns:
result: APoT Tensor representation of tensor2quantize
"""
def quantize(self, tensor2quantize: Tensor):
result = torch.tensor([])
# map float_to_apot over tensor2quantize elements
tensor2quantize = tensor2quantize.detach().apply_(lambda x: float_to_apot(x,
self.quantization_levels,
self.level_indices,
self.alpha))
# convert to APoT int representation for dtype
tensor2quantize = tensor2quantize.int()
from torch.ao.quantization.experimental.APoT_tensor import TensorAPoT
result = TensorAPoT(self, tensor2quantize)
return result
r""" Dequantizes integer Tensor to floating point (fp) representation
based on the calculated quantization levels from a specified APoT non-uniform observer.
The approach follows the method outlined in the APoT paper: https://arxiv.org/pdf/1909.13144.pdf.
Args:
tensor2quantize: fp Tensor
Returns:
result: fp reduced precision representation of input Tensor
"""
def dequantize(self, apot_tensor) -> Tensor:
orig_size = apot_tensor.data.size()
apot_tensor_data = apot_tensor.data.flatten()
print(apot_tensor_data)
# map apot_to_float over tensor2quantize elements
result_temp = np.empty(shape=apot_tensor_data.size())
for i in range(len(apot_tensor_data)):
new_ele = apot_to_float(apot_tensor_data[i], self.quantization_levels, self.level_indices)
result_temp[i] = new_ele
result = torch.from_numpy(result_temp).reshape(orig_size)
return result
r""" Returns result of quantize -> dequantize on a fp Tensor (reduced precision)
based on the calculated quantization levels from a specified APoT non-uniform observer.
The approach follows the method outlined in the APoT paper: https://arxiv.org/pdf/1909.13144.pdf.
Args:
apot_tensor: quantized APoT Tensor to dequantize
Returns:
result: fp representation of input Tensor
"""
def quant_dequant(self, tensor2quantize: Tensor) -> Tensor:
levels_lst = list(self.quantization_levels)
result = tensor2quantize.apply_(lambda x: quant_dequant_util(x, levels_lst))
return result
def q_apot_alpha(self) -> float:
raise NotImplementedError
r""" Global method to create quantizer and call quantizer quantize_APoT
Args:
tensor2quantize: fp Tensor to quantize
alpha: Tensor qparam alpha (clipping level)
gamma: Tensor qparam gamma (scale factor for quantization levels)
quantization levels: Tensor with fp quantization levels
level indices: Tensor with integer quantization level indices
Returns:
result: ApoT Tensor representation of tensor2quantize
"""
def quantize_APoT(tensor2quantize: Tensor, alpha: Tensor, gamma: Tensor, quantization_levels: Tensor, level_indices: Tensor):
quantizer = APoTQuantizer(alpha=alpha, gamma=gamma, quantization_levels=quantization_levels, level_indices=level_indices)
result = quantizer.quantize(tensor2quantize)
return result
r""" Global method to create quantizer and call quantizer dequantize_APoT
Args:
apot_tensor: APoT Tensor to dequantize
Returns:
result: fp Tensor dequantized from apot_tensor
"""
def dequantize_APoT(apot_tensor) -> Tensor:
quantizer = apot_tensor.quantizer
result = quantizer.dequantize(apot_tensor)
return result
r""" Global method to create quantizer and call quantizer quant_dequant
Args:
tensor2quantize: fp Tensor to quantize
alpha: Tensor qparam alpha (clipping level)
gamma: Tensor qparam gamma (scale factor for quantization levels)
quantization levels: Tensor with fp quantization levels
level indices: Tensor with integer quantization level indices
Returns:
result: fp reduced precision Tensor from tensor2quantize
"""
def quant_dequant_APoT(tensor2quantize: Tensor,
alpha: Tensor,
gamma: Tensor,
quantization_levels: Tensor,
level_indices: Tensor) -> Tensor:
quantizer = APoTQuantizer(alpha=alpha, gamma=gamma, quantization_levels=quantization_levels, level_indices=level_indices)
result = quantizer.quant_dequant(tensor2quantize)
return result