mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Fix case when optimizer isn't called within a device scope context. Fix OptimizerContext lr blob names Reviewed By: volkhin Differential Revision: D5421046 fbshipit-source-id: 186a0d05f40d4442c5ba5736084626da73a0c0f1
255 lines
10 KiB
Python
255 lines
10 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from caffe2.python.optimizer import (
|
|
build_sgd, build_multi_precision_sgd, build_ftrl,
|
|
build_adagrad, build_adam, add_weight_decay, SgdOptimizer)
|
|
from caffe2.python.optimizer_context import UseOptimizer
|
|
from caffe2.python.optimizer_test_util import OptimizerTestBase
|
|
from caffe2.python.test_util import TestCase
|
|
from caffe2.python import workspace
|
|
from caffe2.python.core import DataType
|
|
import numpy as np
|
|
import unittest
|
|
|
|
|
|
class TestSgd(OptimizerTestBase, TestCase):
|
|
def build_optimizer(self, model):
|
|
self._skip_gpu = False
|
|
return build_sgd(model, base_learning_rate=0.1)
|
|
|
|
def check_optimizer(self, optimizer):
|
|
self.assertTrue(optimizer.get_auxiliary_parameters().shared)
|
|
self.assertFalse(optimizer.get_auxiliary_parameters().local)
|
|
for param in optimizer.get_auxiliary_parameters().shared:
|
|
tensor = workspace.FetchBlob(param)
|
|
np.testing.assert_allclose(np.array([1.0]), tensor, atol=1e-5)
|
|
|
|
|
|
class TestMultiPrecisionSgd(OptimizerTestBase, TestCase):
|
|
def build_optimizer(self, model):
|
|
self._skip_gpu = False
|
|
return build_multi_precision_sgd(model, base_learning_rate=0.1)
|
|
|
|
def check_optimizer(self, optimizer):
|
|
self.assertTrue(optimizer.get_auxiliary_parameters().shared)
|
|
self.assertFalse(optimizer.get_auxiliary_parameters().local)
|
|
for param in optimizer.get_auxiliary_parameters().shared:
|
|
tensor = workspace.FetchBlob(param)
|
|
np.testing.assert_allclose(np.array([1.0]), tensor, atol=1e-5)
|
|
|
|
@unittest.skipIf(not workspace.has_gpu_support, "No GPU support")
|
|
def testGPUDense(self):
|
|
super(TestMultiPrecisionSgd, self).testGPUDense(DataType.FLOAT16)
|
|
|
|
|
|
class TestFtrl(OptimizerTestBase, TestCase):
|
|
def build_optimizer(self, model):
|
|
self._skip_gpu = True
|
|
return build_ftrl(
|
|
model, engine=None, alpha=1.0, beta=0.1, lambda1=0.0, lambda2=0.0)
|
|
|
|
def check_optimizer(self, optimizer):
|
|
self.assertFalse(optimizer.get_auxiliary_parameters().shared)
|
|
self.assertTrue(optimizer.get_auxiliary_parameters().local)
|
|
for param in optimizer.get_auxiliary_parameters().local:
|
|
workspace.FetchBlob(param)
|
|
|
|
|
|
class TestAdagrad(OptimizerTestBase, TestCase):
|
|
def build_optimizer(self, model):
|
|
self._skip_gpu = False
|
|
return build_adagrad(model, base_learning_rate=1.0)
|
|
|
|
def check_optimizer(self, optimizer):
|
|
self.assertFalse(optimizer.get_auxiliary_parameters().shared)
|
|
self.assertTrue(optimizer.get_auxiliary_parameters().local)
|
|
for param in optimizer.get_auxiliary_parameters().local:
|
|
workspace.FetchBlob(param)
|
|
|
|
|
|
class TestAdam(OptimizerTestBase, TestCase):
|
|
def build_optimizer(self, model):
|
|
self._skip_gpu = False
|
|
return build_adam(model, base_learning_rate=0.1)
|
|
|
|
def check_optimizer(self, optimizer):
|
|
self.assertTrue(optimizer.get_auxiliary_parameters().shared)
|
|
self.assertTrue(optimizer.get_auxiliary_parameters().local)
|
|
self.assertTrue(workspace.HasBlob("optimizer_iteration"))
|
|
iteration_tensor = workspace.FetchBlob("optimizer_iteration")
|
|
np.testing.assert_allclose(np.array([2000]),
|
|
iteration_tensor,
|
|
atol=1e-5)
|
|
for param in optimizer.get_auxiliary_parameters().shared:
|
|
workspace.FetchBlob(param)
|
|
for param in optimizer.get_auxiliary_parameters().local:
|
|
workspace.FetchBlob(param)
|
|
|
|
|
|
class TestMultiOptimizers(TestCase):
|
|
def test_multiple_optimizers(self):
|
|
from caffe2.python import brew, core, optimizer
|
|
from caffe2.python.model_helper import ModelHelper
|
|
|
|
model = ModelHelper(name="test")
|
|
fc1 = brew.fc(model, 'data', 'fc1', 100, 50)
|
|
fc2 = brew.fc(model, fc1, 'fc2', 50, 25)
|
|
pred = brew.fc(model, fc2, 'fc3', 25, 10)
|
|
(softmax, loss) = model.SoftmaxWithLoss(
|
|
[pred, 'label'],
|
|
['softmax', 'loss'],
|
|
)
|
|
model.AddGradientOperators([loss])
|
|
|
|
param_to_device = optimizer._get_param_to_device(model)
|
|
|
|
def infer_blob_device(blob_name):
|
|
return optimizer.get_param_device(
|
|
blob_name, "{}_grad".format(blob_name), param_to_device
|
|
)
|
|
|
|
sgd_1 = optimizer.SgdOptimizer(base_learning_rate=0.1)
|
|
sgd_2 = optimizer.SgdOptimizer(base_learning_rate=0.2)
|
|
adagrad = optimizer.AdagradOptimizer()
|
|
|
|
# Check same optimizer share the same learning rate.
|
|
with core.DeviceScope(infer_blob_device("fc1_w")):
|
|
sgd_1(model.net, model.param_init_net, "fc1_w", "fc1_w_grad")
|
|
with core.DeviceScope(infer_blob_device("fc1_b")):
|
|
sgd_1(model.net, model.param_init_net, "fc1_b", "fc1_b_grad")
|
|
fc1_lr_blobs = []
|
|
for op in model.net.Proto().op:
|
|
if op.type == 'WeightedSum' and op.input[0] == 'fc1_w' or \
|
|
op.input[0] == 'fc1_b':
|
|
fc1_lr_blobs.append(op.input[3])
|
|
self.assertEqual(fc1_lr_blobs[0], fc1_lr_blobs[1])
|
|
|
|
# Check different instance of the same optimizer has a different lr.
|
|
with core.DeviceScope(infer_blob_device("fc2_w")):
|
|
sgd_2(model.net, model.param_init_net, "fc2_w", "fc2_w_grad")
|
|
with core.DeviceScope(infer_blob_device("fc2_b")):
|
|
sgd_2(model.net, model.param_init_net, "fc2_b", "fc2_b_grad")
|
|
fc2_lr_blobs = []
|
|
for op in model.net.Proto().op:
|
|
if op.type == 'WeightedSum' and op.input[0] == 'fc2_w' or \
|
|
op.input[0] == 'fc2_b':
|
|
self.assertTrue(op.input[3] not in fc1_lr_blobs)
|
|
fc2_lr_blobs.append(op.input[3])
|
|
self.assertEqual(fc2_lr_blobs[0], fc2_lr_blobs[1])
|
|
|
|
# Check different optimizer type case
|
|
with core.DeviceScope(infer_blob_device("fc3_w")):
|
|
adagrad(model.net, model.param_init_net, "fc3_w", "fc3_w_grad")
|
|
with core.DeviceScope(infer_blob_device("fc3_b")):
|
|
adagrad(model.net, model.param_init_net, "fc3_b", "fc3_b_grad")
|
|
fc3_lr_blobs = []
|
|
for op in model.net.Proto().op:
|
|
if op.type == 'Adagrad' and op.input[0] == 'fc3_w' or \
|
|
op.input[0] == 'fc3_b':
|
|
self.assertTrue(op.input[3] not in fc2_lr_blobs)
|
|
self.assertTrue(op.input[3] not in fc1_lr_blobs)
|
|
fc3_lr_blobs.append(op.input[3])
|
|
self.assertEqual(fc3_lr_blobs[0], fc3_lr_blobs[1])
|
|
|
|
|
|
class TestWeightDecay(TestCase):
|
|
|
|
def test_weight_decay(self):
|
|
from caffe2.python import brew
|
|
from caffe2.python.model_helper import ModelHelper
|
|
|
|
model = ModelHelper(name="test", arg_scope={'order': 'NCHW'})
|
|
cnv = brew.conv(model, 'data', 'cnv', 32, 32, 4)
|
|
a = brew.fc(model, cnv, 'a', 100, 200)
|
|
pred = brew.fc(model, a, 'b', 200, 5)
|
|
(softmax, loss) = model.SoftmaxWithLoss(
|
|
[pred, 'label'],
|
|
['softmax', 'loss'],
|
|
)
|
|
model.AddGradientOperators([loss])
|
|
|
|
add_weight_decay(model, weight_decay=1e-4)
|
|
build_sgd(model, 0.11)
|
|
|
|
expected_weight_grad = {'b_w_grad', 'a_w_grad', 'cnv_w_grad'}
|
|
|
|
# Check the proto that all weights are decayed and not non-weights
|
|
# are decayed.
|
|
for op in model.net.Proto().op:
|
|
if op.type == 'WeightedSum' and 'wd_0_0' in op.input:
|
|
if op.output[0] not in expected_weight_grad:
|
|
print(
|
|
"Unexpected param for weight_decay: {}".
|
|
format(op.output[0])
|
|
)
|
|
self.assertTrue(op.output[0] in expected_weight_grad)
|
|
expected_weight_grad.remove(op.output[0])
|
|
|
|
self.assertEqual(
|
|
expected_weight_grad,
|
|
set(),
|
|
"Not all weights were decayed: {}".format(expected_weight_grad)
|
|
)
|
|
|
|
|
|
class TestOptimizerContext(TestCase):
|
|
|
|
def test_optimizer_context(self):
|
|
from caffe2.python import brew
|
|
from caffe2.python.model_helper import ModelHelper
|
|
|
|
model = ModelHelper(name="test", arg_scope={'order': 'NCHW'})
|
|
cnv_optim = SgdOptimizer(0.15)
|
|
weight_optim = SgdOptimizer(0.2)
|
|
bias_optim = SgdOptimizer(0.1)
|
|
|
|
with UseOptimizer(cnv_optim):
|
|
cnv = brew.conv(model, 'data', 'cnv', 32, 32, 4)
|
|
with UseOptimizer({'WEIGHT': weight_optim, 'BIAS': bias_optim}):
|
|
a = brew.fc(model, cnv, 'a', 100, 200)
|
|
pred = brew.fc(model, a, 'b', 200, 5)
|
|
(softmax, loss) = model.SoftmaxWithLoss(
|
|
[pred, 'label'],
|
|
['softmax', 'loss'],
|
|
)
|
|
model.AddGradientOperators([loss])
|
|
|
|
add_weight_decay(model, weight_decay=1e-4)
|
|
# use the following optimizer if none specified in param_info
|
|
build_sgd(model, 0.11)
|
|
|
|
expected_weight_grad = {'b_w_grad', 'a_w_grad', 'cnv_w_grad'}
|
|
expected_learning_rate = {
|
|
'SgdOptimizer_0_lr_cpu': -0.15, 'SgdOptimizer_1_lr_cpu': -0.2,
|
|
'SgdOptimizer_2_lr_cpu': -0.1, 'SgdOptimizer_3_lr_cpu': -0.11
|
|
}
|
|
|
|
for op in model.net.Proto().op:
|
|
# Check the proto that all weights are decayed and not non-weights
|
|
# are decayed.
|
|
if op.type == 'WeightedSum' and 'wd_0_0' in op.input:
|
|
if op.output[0] not in expected_weight_grad:
|
|
print(
|
|
"Unexpected param for weight_decay: {}".
|
|
format(op.output[0])
|
|
)
|
|
self.assertTrue(op.output[0] in expected_weight_grad)
|
|
expected_weight_grad.remove(op.output[0])
|
|
# Check the learning rate for each parameter
|
|
if op.type == 'LearningRate':
|
|
val = 0
|
|
for arg in op.arg:
|
|
if arg.name == 'base_lr':
|
|
val = arg.f
|
|
self.assertEqual(
|
|
val,
|
|
expected_learning_rate[op.output[0]]
|
|
)
|
|
|
|
self.assertEqual(
|
|
expected_weight_grad,
|
|
set(),
|
|
"Not all weights were decayed: {}".format(expected_weight_grad)
|
|
)
|