mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-08 07:39:33 +01:00
Summary: It has been discussed before that adding description of Optimization algorithms to PyTorch Core documentation may result in a nice Optimization research tutorial. In the following tracking issue we mentioned about all the necessary algorithms and links to the originally published paper https://github.com/pytorch/pytorch/issues/63236. In this PR we are adding description of RMSProp to the documentation. For more details, we refer to the paper https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf <img width="464" alt="RMSProp" src="https://user-images.githubusercontent.com/73658284/131179226-3fb6fe5a-5301-4948-afbe-f38bf57f24ff.png"> Pull Request resolved: https://github.com/pytorch/pytorch/pull/63721 Reviewed By: albanD Differential Revision: D30612426 Pulled By: iramazanli fbshipit-source-id: c3ac630a9658d1282866b53c86023ac10cf95398
148 lines
7.2 KiB
Python
148 lines
7.2 KiB
Python
import torch
|
|
from . import _functional as F
|
|
from .optimizer import Optimizer
|
|
|
|
|
|
class RMSprop(Optimizer):
|
|
r"""Implements RMSprop algorithm.
|
|
|
|
.. math::
|
|
\begin{aligned}
|
|
&\rule{110mm}{0.4pt} \\
|
|
&\textbf{input} : \alpha \text{ (alpha)},\: \gamma \text{ (lr)},
|
|
\: \theta_0 \text{ (params)}, \: f(\theta) \text{ (objective)} \\
|
|
&\hspace{13mm} \lambda \text{ (weight decay)},\: \mu \text{ (momentum)},\: centered\\
|
|
&\textbf{initialize} : v_0 \leftarrow 0 \text{ (square average)}, \:
|
|
\textbf{b}_0 \leftarrow 0 \text{ (buffer)}, \: g^{ave}_0 \leftarrow 0 \\[-1.ex]
|
|
&\rule{110mm}{0.4pt} \\
|
|
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\
|
|
&\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\
|
|
&\hspace{5mm}if \: \lambda \neq 0 \\
|
|
&\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\
|
|
&\hspace{5mm}v_t \leftarrow \alpha v_{t-1} + (1 - \alpha) g^2_t
|
|
\hspace{8mm} \\
|
|
&\hspace{5mm} \tilde{v_t} \leftarrow v_t \\
|
|
&\hspace{5mm}if \: centered \\
|
|
&\hspace{10mm} g^{ave}_t \leftarrow g^{ave}_{t-1} \alpha + (1-\alpha) g_t \\
|
|
&\hspace{10mm} \tilde{v_t} \leftarrow \tilde{v_t} - \big(g^{ave}_{t} \big)^2 \\
|
|
&\hspace{5mm}if \: \mu > 0 \\
|
|
&\hspace{10mm} \textbf{b}_t\leftarrow \mu \textbf{b}_{t-1} +
|
|
g_t/ \big(\sqrt{\tilde{v_t}} + \epsilon \big) \\
|
|
&\hspace{10mm} \theta_t \leftarrow \theta_{t-1} - \gamma \textbf{b}_t \\
|
|
&\hspace{5mm} else \\
|
|
&\hspace{10mm}\theta_t \leftarrow \theta_{t-1} -
|
|
\gamma g_t/ \big(\sqrt{\tilde{v_t}} + \epsilon \big) \hspace{3mm} \\
|
|
&\rule{110mm}{0.4pt} \\[-1.ex]
|
|
&\bf{return} \: \theta_t \\[-1.ex]
|
|
&\rule{110mm}{0.4pt} \\[-1.ex]
|
|
\end{aligned}
|
|
|
|
For further details regarding the algorithm we refer to
|
|
`lecture notes <https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`_ by G. Hinton.
|
|
and centered version `Generating Sequences
|
|
With Recurrent Neural Networks <https://arxiv.org/pdf/1308.0850v5.pdf>`_.
|
|
The implementation here takes the square root of the gradient average before
|
|
adding epsilon (note that TensorFlow interchanges these two operations). The effective
|
|
learning rate is thus :math:`\gamma/(\sqrt{v} + \epsilon)` where :math:`\gamma`
|
|
is the scheduled learning rate and :math:`v` is the weighted moving average
|
|
of the squared gradient.
|
|
|
|
Args:
|
|
params (iterable): iterable of parameters to optimize or dicts defining
|
|
parameter groups
|
|
lr (float, optional): learning rate (default: 1e-2)
|
|
momentum (float, optional): momentum factor (default: 0)
|
|
alpha (float, optional): smoothing constant (default: 0.99)
|
|
eps (float, optional): term added to the denominator to improve
|
|
numerical stability (default: 1e-8)
|
|
centered (bool, optional) : if ``True``, compute the centered RMSProp,
|
|
the gradient is normalized by an estimation of its variance
|
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
|
|
|
|
"""
|
|
|
|
def __init__(self, params, lr=1e-2, alpha=0.99, eps=1e-8, weight_decay=0, momentum=0, centered=False):
|
|
if not 0.0 <= lr:
|
|
raise ValueError("Invalid learning rate: {}".format(lr))
|
|
if not 0.0 <= eps:
|
|
raise ValueError("Invalid epsilon value: {}".format(eps))
|
|
if not 0.0 <= momentum:
|
|
raise ValueError("Invalid momentum value: {}".format(momentum))
|
|
if not 0.0 <= weight_decay:
|
|
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
|
|
if not 0.0 <= alpha:
|
|
raise ValueError("Invalid alpha value: {}".format(alpha))
|
|
|
|
defaults = dict(lr=lr, momentum=momentum, alpha=alpha, eps=eps, centered=centered, weight_decay=weight_decay)
|
|
super(RMSprop, self).__init__(params, defaults)
|
|
|
|
def __setstate__(self, state):
|
|
super(RMSprop, self).__setstate__(state)
|
|
for group in self.param_groups:
|
|
group.setdefault('momentum', 0)
|
|
group.setdefault('centered', False)
|
|
|
|
@torch.no_grad()
|
|
def step(self, closure=None):
|
|
"""Performs a single optimization step.
|
|
|
|
Args:
|
|
closure (callable, optional): A closure that reevaluates the model
|
|
and returns the loss.
|
|
"""
|
|
loss = None
|
|
if closure is not None:
|
|
with torch.enable_grad():
|
|
loss = closure()
|
|
|
|
for group in self.param_groups:
|
|
params_with_grad = []
|
|
grads = []
|
|
square_avgs = []
|
|
grad_avgs = []
|
|
momentum_buffer_list = []
|
|
|
|
for p in group['params']:
|
|
if p.grad is None:
|
|
continue
|
|
params_with_grad.append(p)
|
|
|
|
if p.grad.is_sparse:
|
|
raise RuntimeError('RMSprop does not support sparse gradients')
|
|
grads.append(p.grad)
|
|
|
|
state = self.state[p]
|
|
|
|
# State initialization
|
|
if len(state) == 0:
|
|
state['step'] = 0
|
|
state['square_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
|
if group['momentum'] > 0:
|
|
state['momentum_buffer'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
|
if group['centered']:
|
|
state['grad_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
|
|
|
square_avgs.append(state['square_avg'])
|
|
|
|
if group['momentum'] > 0:
|
|
momentum_buffer_list.append(state['momentum_buffer'])
|
|
if group['centered']:
|
|
grad_avgs.append(state['grad_avg'])
|
|
|
|
state['step'] += 1
|
|
|
|
|
|
F.rmsprop(params_with_grad,
|
|
grads,
|
|
square_avgs,
|
|
grad_avgs,
|
|
momentum_buffer_list,
|
|
lr=group['lr'],
|
|
alpha=group['alpha'],
|
|
eps=group['eps'],
|
|
weight_decay=group['weight_decay'],
|
|
momentum=group['momentum'],
|
|
centered=group['centered'])
|
|
|
|
return loss
|