mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: **BC-Breaking Note** This PR changes the behavior of the torch.tensor, torch.as_tensor, and sparse constructors. When given a tensor as input and a device is not explicitly specified, these constructors now always infer their device from the tensor. Historically, if the optional dtype kwarg was provided then these constructors would not infer their device from tensor inputs. Additionally, for the sparse ctor a runtime error is now thrown if the indices and values tensors are on different devices and the device kwarg is not specified. **PR Summary** This PR's functional change is a single line: ``` auto device = device_opt.has_value() ? *device_opt : (type_inference ? var.device() : at::Device(computeDeviceType(dispatch_key))); ``` => ``` auto device = device_opt.has_value() ? *device_opt : var.device(); ``` in `internal_new_from_data`. This line entangled whether the function was performing type inference with whether it inferred its device from an input tensor, and in practice meant that ``` t = torch.tensor((1, 2, 3), device='cuda') torch.tensor(t, dtype=torch.float64) ``` would return a tensor on the CPU, not the default CUDA device, while ``` t = torch.tensor((1, 2, 3), device='cuda') torch.tensor(t) ``` would return a tensor on the device of `t`! This behavior is niche and odd, but came up while aocsa was fixing https://github.com/pytorch/pytorch/issues/40648. An additional side affect of this change is that the indices and values tensors given to a sparse constructor must be on the same device, or the sparse ctor must specify the dtype kwarg. The tests in test_sparse.py have been updated to reflect this behavior. Pull Request resolved: https://github.com/pytorch/pytorch/pull/41984 Reviewed By: ngimel Differential Revision: D22721426 Pulled By: mruberry fbshipit-source-id: 909645124837fcdf3d339d7db539367209eccd48
799 lines
35 KiB
C++
799 lines
35 KiB
C++
#include <torch/csrc/python_headers.h>
|
|
#include <torch/csrc/utils/tensor_new.h>
|
|
|
|
#include <pybind11/pybind11.h>
|
|
#include <torch/csrc/DynamicTypes.h>
|
|
#include <torch/csrc/Exceptions.h>
|
|
#include <torch/csrc/Size.h>
|
|
#include <torch/csrc/autograd/variable.h>
|
|
#include <torch/csrc/utils/cuda_lazy_init.h>
|
|
#include <torch/csrc/utils/numpy_stub.h>
|
|
#include <torch/csrc/utils/python_arg_parser.h>
|
|
#include <torch/csrc/utils/python_numbers.h>
|
|
#include <torch/csrc/utils/python_scalars.h>
|
|
#include <torch/csrc/utils/python_strings.h>
|
|
#include <torch/csrc/utils/tensor_numpy.h>
|
|
#include <torch/csrc/autograd/generated/variable_factories.h>
|
|
|
|
#include <ATen/ATen.h>
|
|
#include <ATen/InitialTensorOptions.h>
|
|
#include <ATen/NamedTensorUtils.h>
|
|
#include <ATen/TracerMode.h>
|
|
#include <c10/core/Backend.h>
|
|
#include <c10/core/Layout.h>
|
|
#include <c10/util/Exception.h>
|
|
#include <c10/util/Optional.h>
|
|
|
|
#include <stdexcept>
|
|
#include <vector>
|
|
|
|
using at::Backend;
|
|
using at::Device;
|
|
using at::IntArrayRef;
|
|
using at::kCPU;
|
|
using at::kCUDA;
|
|
using at::kLong;
|
|
using at::Scalar;
|
|
using at::ScalarType;
|
|
using at::Storage;
|
|
using at::Tensor;
|
|
using at::TensorOptions;
|
|
using at::Type;
|
|
using c10::optional;
|
|
|
|
namespace torch { namespace utils {
|
|
namespace {
|
|
const int MAX_DIMS = 128;
|
|
|
|
Backend backendToBackendOfDeviceType(Backend b, DeviceType d) {
|
|
switch (d) {
|
|
case DeviceType::CPU:
|
|
return backendToCPU(b);
|
|
case DeviceType::CUDA:
|
|
return backendToCUDA(b);
|
|
case DeviceType::HIP:
|
|
return backendToHIP(b);
|
|
case DeviceType::MSNPU:
|
|
TORCH_CHECK(!isSparse(b), "Sparse not implemented for MSNPU");
|
|
return Backend::MSNPU;
|
|
case DeviceType::XLA:
|
|
TORCH_CHECK(!isSparse(b), "Sparse not implemented for XLA");
|
|
return Backend::XLA;
|
|
default:
|
|
AT_ERROR("Unknown device type");
|
|
}
|
|
}
|
|
|
|
TensorOptions options(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, const c10::optional<Device>& device=c10::nullopt) {
|
|
auto options = TensorOptions(scalar_type)
|
|
.device(computeDeviceType(dispatch_key))
|
|
.layout(layout_from_backend(dispatchKeyToBackend(dispatch_key)));
|
|
if (device.has_value()) {
|
|
return options.device(device);
|
|
}
|
|
return options;
|
|
}
|
|
|
|
void maybe_initialize_cuda(c10::DispatchKey dispatch_key) {
|
|
if (backendToDeviceType(dispatchKeyToBackend(dispatch_key)) == kCUDA) {
|
|
torch::utils::cuda_lazy_init();
|
|
}
|
|
}
|
|
|
|
void maybe_initialize_cuda(const Device device) {
|
|
if (device.is_cuda()) {
|
|
torch::utils::cuda_lazy_init();
|
|
}
|
|
}
|
|
|
|
Tensor dispatch_zeros(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, const optional<Device>& device, IntArrayRef sizes) {
|
|
maybe_initialize_cuda(dispatch_key);
|
|
pybind11::gil_scoped_release no_gil;
|
|
return torch::zeros(sizes, options(dispatch_key, scalar_type, device));
|
|
}
|
|
|
|
Tensor dispatch_ones(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, const optional<Device>& device, IntArrayRef sizes) {
|
|
maybe_initialize_cuda(dispatch_key);
|
|
pybind11::gil_scoped_release no_gil;
|
|
return torch::ones(sizes, options(dispatch_key, scalar_type, device));
|
|
}
|
|
|
|
Tensor dispatch_full(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, Scalar fill_value, const optional<Device>& device, IntArrayRef sizes) {
|
|
maybe_initialize_cuda(dispatch_key);
|
|
pybind11::gil_scoped_release no_gil;
|
|
return torch::full(sizes, fill_value, options(dispatch_key, scalar_type, device));
|
|
}
|
|
|
|
Tensor new_with_sizes(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, const optional<Device>& device, IntArrayRef sizes) {
|
|
maybe_initialize_cuda(dispatch_key);
|
|
pybind11::gil_scoped_release no_gil;
|
|
return torch::empty(sizes, options(dispatch_key, scalar_type, device));
|
|
}
|
|
|
|
Tensor new_with_storage(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, Storage storage) {
|
|
auto tensor = at::empty({}, options(dispatch_key, scalar_type));
|
|
tensor.set_(std::move(storage));
|
|
return tensor;
|
|
}
|
|
|
|
Tensor new_with_tensor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, const Tensor& other) {
|
|
TORCH_CHECK_TYPE(legacyExtractDispatchKey(other.key_set()) == dispatch_key, "expected ",
|
|
toString(dispatch_key), " (got ", toString(legacyExtractDispatchKey(other.key_set())), ")");
|
|
TORCH_CHECK_TYPE(other.scalar_type() == scalar_type, "expected ",
|
|
toString(scalar_type), " (got ", toString(other.scalar_type()), ")");
|
|
return other.slice();
|
|
}
|
|
|
|
std::vector<int64_t> compute_sizes(PyObject* seq) {
|
|
std::vector<int64_t> sizes;
|
|
THPObjectPtr handle;
|
|
while (PySequence_Check(seq)) {
|
|
auto length = PySequence_Length(seq);
|
|
if (length < 0) throw python_error();
|
|
sizes.push_back(length);
|
|
if (sizes.size() > MAX_DIMS) {
|
|
throw ValueError("too many dimensions '%s'", Py_TYPE(seq)->tp_name);
|
|
}
|
|
if (length == 0) break;
|
|
handle = THPObjectPtr(PySequence_GetItem(seq, 0));
|
|
if (!handle) {
|
|
throw ValueError("could not determine the shape of object type '%s'", Py_TYPE(seq)->tp_name);
|
|
}
|
|
seq = handle.get();
|
|
}
|
|
|
|
return sizes;
|
|
}
|
|
|
|
ScalarType infer_scalar_type(PyObject *obj) {
|
|
#ifdef USE_NUMPY
|
|
if (PyArray_Check(obj)) {
|
|
return numpy_dtype_to_aten(PyArray_TYPE((PyArrayObject*)obj));
|
|
}
|
|
if (PyArray_CheckScalar(obj)) {
|
|
THPObjectPtr arr(PyArray_FromScalar(obj, nullptr));
|
|
return numpy_dtype_to_aten(PyArray_TYPE((PyArrayObject*) arr.get()));
|
|
}
|
|
#endif
|
|
if (PyFloat_Check(obj)) {
|
|
// this is always guaranteed to be a floating-point type, and makes it more
|
|
// convenient to write e.g. torch.tensor(0.) than torch.tensor(0., dtype=torch.Tensor.dtype).
|
|
return torch::tensors::get_default_scalar_type();
|
|
}
|
|
if (THPUtils_checkLong(obj)) {
|
|
return ScalarType::Long;
|
|
}
|
|
if (PyBool_Check(obj)) {
|
|
return ScalarType::Bool;
|
|
}
|
|
if (PyComplex_Check(obj)) {
|
|
switch (torch::tensors::get_default_scalar_type()) {
|
|
case ScalarType::Float: return ScalarType::ComplexFloat;
|
|
case ScalarType::Double: return ScalarType::ComplexDouble;
|
|
default: TORCH_CHECK(false, "invalid default scalar type for complex");
|
|
}
|
|
}
|
|
if (THPVariable_Check(obj)) {
|
|
auto var = reinterpret_cast<THPVariable*>(obj)->cdata;
|
|
return var.scalar_type();
|
|
}
|
|
if (THPUtils_checkString(obj)) {
|
|
throw TypeError("new(): invalid data type '%s'", Py_TYPE(obj)->tp_name);
|
|
}
|
|
if (PySequence_Check(obj)) {
|
|
c10::optional<ScalarType> scalarType;
|
|
auto length = PySequence_Length(obj);
|
|
if (length < 0) throw python_error();
|
|
// match NumPy semantics, except use default tensor type instead of double.
|
|
if (length == 0) return torch::tensors::get_default_scalar_type();
|
|
for (int i = 0; i < length; ++i) {
|
|
THPObjectPtr handle(PySequence_GetItem(obj, i));
|
|
if (!handle) throw python_error();
|
|
auto cur_item = handle.get();
|
|
if (cur_item == obj) throw TypeError("new(): self-referential lists are incompatible");
|
|
ScalarType item_scalarType = infer_scalar_type(cur_item);
|
|
scalarType = (scalarType) ?
|
|
at::promoteTypes(*scalarType, item_scalarType) : item_scalarType;
|
|
if (scalarType == ScalarType::ComplexDouble) {
|
|
// this won't change (unless we hit undefined, but that will fail later).
|
|
return *scalarType;
|
|
}
|
|
}
|
|
return *scalarType;
|
|
}
|
|
AT_ERROR("Could not infer dtype of ", Py_TYPE(obj)->tp_name);
|
|
}
|
|
|
|
void recursive_store(char* data, IntArrayRef sizes, IntArrayRef strides, int64_t dim,
|
|
ScalarType scalarType, int elementSize, PyObject* obj) {
|
|
int64_t ndim = sizes.size();
|
|
if (dim == ndim) {
|
|
torch::utils::store_scalar(data, scalarType, obj);
|
|
return;
|
|
}
|
|
|
|
auto n = sizes[dim];
|
|
auto seq = THPObjectPtr(PySequence_Fast(obj, "not a sequence"));
|
|
if (!seq) throw python_error();
|
|
auto seq_size = PySequence_Fast_GET_SIZE(seq.get());
|
|
if (seq_size != n) {
|
|
throw ValueError("expected sequence of length %lld at dim %lld (got %lld)",
|
|
(long long)n, (long long)dim, (long long)seq_size);
|
|
}
|
|
|
|
PyObject** items = PySequence_Fast_ITEMS(seq.get());
|
|
for (int64_t i = 0; i < n; i++) {
|
|
recursive_store(data, sizes, strides, dim + 1, scalarType, elementSize, items[i]);
|
|
data += strides[dim] * elementSize;
|
|
}
|
|
}
|
|
|
|
Tensor internal_new_from_data(
|
|
c10::DispatchKey dispatch_key,
|
|
at::ScalarType scalar_type,
|
|
c10::optional<Device> device_opt,
|
|
PyObject* data,
|
|
bool copy_variables,
|
|
bool copy_numpy,
|
|
bool type_inference,
|
|
bool pin_memory = false) {
|
|
|
|
if (THPUtils_checkString(data)) {
|
|
throw TypeError("new(): invalid data type '%s'", Py_TYPE(data)->tp_name);
|
|
}
|
|
|
|
if (THPVariable_Check(data)) {
|
|
TORCH_CHECK(!pin_memory, "Can't pin tensor constructed from a variable");
|
|
auto var = reinterpret_cast<THPVariable*>(data)->cdata;
|
|
if (copy_variables) {
|
|
var = var.detach();
|
|
}
|
|
// infer the scalar type and device type; it's not expected to infer the layout since these constructors
|
|
// are defined per-layout-type (e.g. tensor vs sparse_coo_tensor).
|
|
const auto& inferred_scalar_type = type_inference ? var.scalar_type() : scalar_type;
|
|
auto device = device_opt.has_value() ? *device_opt : var.device();
|
|
pybind11::gil_scoped_release no_gil;
|
|
maybe_initialize_cuda(device);
|
|
return var.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/copy_variables);
|
|
}
|
|
|
|
#ifdef USE_NUMPY
|
|
if (PyObject_HasAttrString(data, "__cuda_array_interface__")) {
|
|
TORCH_CHECK(!pin_memory, "Can't pin tensor constructed from __cuda_array_interface__");
|
|
auto tensor = tensor_from_cuda_array_interface(data);
|
|
const auto& inferred_scalar_type = type_inference ? tensor.scalar_type() : scalar_type;
|
|
auto device = device_opt.has_value() ? *device_opt : at::Device(computeDeviceType(dispatch_key));
|
|
pybind11::gil_scoped_release no_gil;
|
|
maybe_initialize_cuda(device);
|
|
return tensor.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/copy_numpy);
|
|
}
|
|
|
|
if (PyArray_Check(data)) {
|
|
TORCH_CHECK(!pin_memory, "Can't pin tensor constructed from numpy");
|
|
auto tensor = tensor_from_numpy(data);
|
|
const auto& inferred_scalar_type = type_inference ? tensor.scalar_type() : scalar_type;
|
|
auto device = device_opt.has_value() ? *device_opt : at::Device(computeDeviceType(dispatch_key));
|
|
pybind11::gil_scoped_release no_gil;
|
|
maybe_initialize_cuda(device);
|
|
return tensor.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/copy_numpy);
|
|
}
|
|
#endif
|
|
|
|
auto sizes = compute_sizes(data);
|
|
ScalarType inferred_scalar_type = type_inference ? infer_scalar_type(data) : scalar_type;
|
|
// This exists to prevent us from tracing the call to empty(). The actual
|
|
// autograd code doesn't really matter, because requires_grad is always false
|
|
// here.
|
|
Tensor tensor;
|
|
{
|
|
at::AutoNonVariableTypeMode guard; // TODO: remove
|
|
at::tracer::impl::NoTracerDispatchMode tracer_guard;
|
|
tensor = at::empty(sizes, at::initialTensorOptions().dtype(inferred_scalar_type).pinned_memory(pin_memory));
|
|
recursive_store(
|
|
(char*)tensor.data_ptr(), tensor.sizes(), tensor.strides(), 0,
|
|
inferred_scalar_type, tensor.dtype().itemsize(), data);
|
|
}
|
|
auto device = device_opt.has_value() ? *device_opt : at::Device(computeDeviceType(dispatch_key));
|
|
pybind11::gil_scoped_release no_gil;
|
|
maybe_initialize_cuda(device);
|
|
// However, it is VERY important that we trace the to() call here (even
|
|
// though the reason this is important is a hack). Without *some* factory
|
|
// function call that is traced at construction time, we will consider
|
|
// a tensor constant as originating from "outside" the trace, and if you
|
|
// try to return it directly we will fail with the error saying no
|
|
// "no observable data dependence". In an ideal world, we wouldn't trace
|
|
// a to() call but I need to think harder about what exactly we should trace
|
|
// in this case.
|
|
return tensor.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/false);
|
|
}
|
|
|
|
Tensor new_from_data_copy(
|
|
c10::DispatchKey dispatch_key,
|
|
at::ScalarType scalar_type,
|
|
c10::optional<Device> device,
|
|
PyObject* data) {
|
|
return internal_new_from_data(dispatch_key, scalar_type, std::move(device), data,
|
|
/*copy_variables=*/true, /*copy_numpy=*/true,
|
|
/*type_inference=*/false);
|
|
}
|
|
|
|
Tensor legacy_new_from_sequence(
|
|
c10::DispatchKey dispatch_key,
|
|
at::ScalarType scalar_type,
|
|
c10::optional<Device> device,
|
|
PyObject* data) {
|
|
if (!PySequence_Check(data)) {
|
|
throw TypeError("new(): data must be a sequence (got %s)", Py_TYPE(data)->tp_name);
|
|
}
|
|
return internal_new_from_data(dispatch_key, scalar_type, std::move(device), data,
|
|
/*copy_variables=*/false, /*copy_numpy=*/false,
|
|
/*type_inference=*/false);
|
|
}
|
|
|
|
// "base" here refers to the Tensor type on which the function was invoked, e.g.:
|
|
// in x.new(y), 'x' is the base.
|
|
void check_base_legacy_new(c10::DispatchKey dispatch_key, at::Layout expected_layout) {
|
|
if (expected_layout == c10::kStrided) {
|
|
TORCH_CHECK(dispatch_key == c10::DispatchKey::CPU
|
|
|| dispatch_key == c10::DispatchKey::CUDA
|
|
|| dispatch_key == c10::DispatchKey::HIP
|
|
|| c10::XLA().has(dispatch_key),
|
|
"new(): expected DispatchKey: ", c10::DispatchKey::CPU,
|
|
" or ", c10::DispatchKey::CUDA,
|
|
" or ", c10::DispatchKey::HIP,
|
|
" or ", c10::DispatchKey::XLA,
|
|
" but got: ", dispatch_key);
|
|
} else if(expected_layout == c10::kSparse) {
|
|
// NOTE: no sparse XLA
|
|
TORCH_CHECK(dispatch_key == c10::DispatchKey::SparseCPU
|
|
|| dispatch_key == c10::DispatchKey::SparseCUDA
|
|
|| dispatch_key == c10::DispatchKey::SparseHIP,
|
|
"new(): expected DispatchKey: ", c10::DispatchKey::SparseCPU,
|
|
" or ", c10::DispatchKey::SparseCUDA,
|
|
" or ", c10::DispatchKey::SparseHIP,
|
|
" but got: ", dispatch_key);
|
|
} else {
|
|
TORCH_INTERNAL_ASSERT(false, "unexpected layout");
|
|
}
|
|
}
|
|
|
|
void check_legacy_ctor_device(c10::DispatchKey dispatch_key, c10::optional<Device> device) {
|
|
if (device.has_value()) {
|
|
TORCH_CHECK(computeDeviceType(dispatch_key) == device.value().type(),
|
|
"legacy constructor for device type: ", computeDeviceType(dispatch_key),
|
|
" was passed device type: ", device.value().type(),
|
|
", but device type must be: ", computeDeviceType(dispatch_key));
|
|
}
|
|
}
|
|
|
|
Tensor legacy_sparse_tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
static PythonArgParser parser({
|
|
"new(*, Device? device=None)",
|
|
"new(*, int64_t cdata)|hidden",
|
|
"new(Tensor indices, Tensor values, *, Device? device=None)",
|
|
"new(Tensor indices, Tensor values, IntArrayRef size, *, Device? device=None)",
|
|
"new(IntArrayRef size, *, Device? device=None)",
|
|
});
|
|
ParsedArgs<4> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
auto deviceOptional = r.deviceOptional(0);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
return at::empty({0}, options(dispatch_key, scalar_type, deviceOptional));
|
|
} else if (r.idx == 1) {
|
|
auto cdata = reinterpret_cast<void*>(r.toInt64(0));
|
|
return at::unsafeTensorFromTH(cdata, true);
|
|
} else if (r.idx == 2) {
|
|
auto deviceOptional = r.deviceOptional(2);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
return at::sparse_coo_tensor(r.tensor(0), r.tensor(1));
|
|
} else if (r.idx == 3) {
|
|
auto deviceOptional = r.deviceOptional(3);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
return at::sparse_coo_tensor(r.tensor(0), r.tensor(1), r.intlist(2));
|
|
} else if (r.idx == 4) {
|
|
PyObject* arg = r.pyobject(0);
|
|
auto deviceOptional = r.deviceOptional(1);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
|
|
// new(sequence) binds to this signature but should be treated differently
|
|
// unless the sequences is a torch.Size
|
|
throw TypeError("torch.SparseTensor(sequence) only accepts sizes. Please use torch.sparse_coo_tensor() " \
|
|
"or construct a strided tensor and convert it to sparse via to_sparse.");
|
|
}
|
|
return new_with_sizes(dispatch_key, scalar_type, r.deviceOptional(1), r.intlist(0));
|
|
}
|
|
throw std::runtime_error("new(): invalid arguments");
|
|
}
|
|
|
|
Tensor legacy_sparse_tensor_new(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
static PythonArgParser parser({
|
|
"new(*, Device? device=None)",
|
|
"new(*, int64_t cdata)|hidden",
|
|
"new(Tensor indices, Tensor values, *, Device? device=None)",
|
|
"new(Tensor indices, Tensor values, IntArrayRef size, *, Device? device=None)",
|
|
"new(IntArrayRef size, *, Device? device=None)",
|
|
});
|
|
check_base_legacy_new(dispatch_key, c10::kSparse);
|
|
ParsedArgs<5> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
auto deviceOptional = r.deviceOptional(0);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
return at::empty({0}, options(dispatch_key, scalar_type));
|
|
} else if (r.idx == 1) {
|
|
auto cdata = reinterpret_cast<void*>(r.toInt64(0));
|
|
return at::unsafeTensorFromTH(cdata, true);
|
|
} else if (r.idx == 2) {
|
|
// Note: this signature doesn't have a dtype, even though it has a device; it probably shouldn't
|
|
// have a device (we should infer it).
|
|
auto deviceOptional = r.deviceOptional(2);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
return at::sparse_coo_tensor(r.tensor(0), r.tensor(1));
|
|
} else if (r.idx == 3) {
|
|
// Note: this signature doesn't have a dtype, even though it has a device; it probably shouldn't
|
|
// have a device (we should infer it).
|
|
auto deviceOptional = r.deviceOptional(3);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
return at::sparse_coo_tensor(r.tensor(0), r.tensor(1), r.intlist(2));
|
|
} else if (r.idx == 4) {
|
|
PyObject* arg = r.pyobject(0);
|
|
auto deviceOptional = r.deviceOptional(1);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
|
|
// new(sequence) binds to this signature but should be treated differently
|
|
// unless the sequences is a torch.Size
|
|
throw TypeError("SparseTensor.new(sequence) only accepts sizes. Please use torch.sparse_coo_tensor() " \
|
|
"or construct a strided tensor and convert it to sparse via to_sparse.");
|
|
}
|
|
return new_with_sizes(dispatch_key, scalar_type, r.deviceOptional(1), r.intlist(0));
|
|
}
|
|
throw std::runtime_error("new(): invalid arguments");
|
|
}
|
|
|
|
// NB: device_idx here is NOT a DeviceIndex, but index into PythonArgs
|
|
c10::DispatchKey typeIdWithDefault(PythonArgs& r, int64_t device_idx, c10::DispatchKey dispatch_key) {
|
|
auto device_type = r.isNone(device_idx) ? computeDeviceType(dispatch_key) : r.device(device_idx).type();
|
|
return backendToDispatchKey(backendToBackendOfDeviceType(dispatchKeyToBackend(dispatch_key), device_type));
|
|
}
|
|
|
|
// NB: device_idx here is NOT a DeviceIndex, but index into PythonArgs
|
|
c10::DispatchKey denseTypeIdWithDefault(PythonArgs& r, int64_t device_idx, c10::DispatchKey dispatch_key) {
|
|
auto device_type = r.isNone(device_idx) ? computeDeviceType(dispatch_key) : r.device(device_idx).type();
|
|
return backendToDispatchKey(toDense(backendToBackendOfDeviceType(dispatchKeyToBackend(dispatch_key), device_type)));
|
|
}
|
|
} // namespace
|
|
|
|
Tensor legacy_tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
static PythonArgParser parser({
|
|
"new(*, Device? device=None)",
|
|
"new(Storage storage)",
|
|
"new(*, int64_t cdata)|hidden",
|
|
"new(Tensor other)",
|
|
"new(IntArrayRef size, *, Device? device=None)",
|
|
"new(PyObject* data, *, Device? device=None)",
|
|
});
|
|
|
|
if (isSparse(dispatchKeyToBackend(dispatch_key))) {
|
|
return legacy_sparse_tensor_ctor(dispatch_key, scalar_type, args, kwargs);
|
|
}
|
|
|
|
ParsedArgs<2> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
auto deviceOptional = r.deviceOptional(0);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
return at::empty({0}, options(dispatch_key, scalar_type));
|
|
} else if (r.idx == 1) {
|
|
THPObjectPtr dtype_attr(PyObject_GetAttrString(r.pyobject(0), "dtype"));
|
|
if (!dtype_attr) throw python_error();
|
|
at::ScalarType storage_scalar_type = reinterpret_cast<THPDtype*>(
|
|
dtype_attr.get())->scalar_type;
|
|
TORCH_CHECK(
|
|
storage_scalar_type == scalar_type,
|
|
"Expected Storage of type ",
|
|
scalar_type,
|
|
" but got type ",
|
|
storage_scalar_type,
|
|
" for argument 1 'storage'");
|
|
return new_with_storage(dispatch_key, scalar_type, r.storage(0));
|
|
} else if (r.idx == 2) {
|
|
auto cdata = reinterpret_cast<void*>(r.toInt64(0));
|
|
return at::unsafeTensorFromTH(cdata, true);
|
|
} else if (r.idx == 3) {
|
|
return new_with_tensor(dispatch_key, scalar_type, r.tensor(0));
|
|
} else if (r.idx == 4) {
|
|
PyObject* arg = r.pyobject(0);
|
|
auto deviceOptional = r.deviceOptional(1);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
|
|
// new(sequence) binds to this signature but should be treated differently
|
|
// unless the sequences is a torch.Size
|
|
return legacy_new_from_sequence(dispatch_key, scalar_type, deviceOptional, r.pyobject(0));
|
|
}
|
|
return new_with_sizes(dispatch_key, scalar_type, r.deviceOptional(1), r.intlist(0));
|
|
} else if (r.idx == 5) {
|
|
auto deviceOptional = r.deviceOptional(1);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
return legacy_new_from_sequence(dispatch_key, scalar_type, deviceOptional, r.pyobject(0));
|
|
}
|
|
throw std::runtime_error("new(): invalid arguments");
|
|
}
|
|
|
|
Tensor legacy_tensor_new(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
static PythonArgParser parser({
|
|
"new(*, Device? device=None)",
|
|
"new(Storage storage)",
|
|
"new(*, int64_t cdata)|hidden",
|
|
"new(Tensor other)", // this doesn't have a dtype/device because it creates an alias.
|
|
"new(IntArrayRef size, *, Device? device=None)",
|
|
"new(PyObject* data, *, Device? device=None)",
|
|
});
|
|
|
|
if (isSparse(dispatchKeyToBackend(dispatch_key))) {
|
|
return legacy_sparse_tensor_new(dispatch_key, scalar_type, args, kwargs);
|
|
}
|
|
|
|
check_base_legacy_new(dispatch_key, c10::kStrided);
|
|
ParsedArgs<3> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
auto deviceOptional = r.deviceOptional(0);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
return at::empty({0}, options(dispatch_key, scalar_type));
|
|
} else if (r.idx == 1) {
|
|
THPObjectPtr dtype_attr(PyObject_GetAttrString(r.pyobject(0), "dtype"));
|
|
if (!dtype_attr) throw python_error();
|
|
at::ScalarType storage_scalar_type = reinterpret_cast<THPDtype*>(
|
|
dtype_attr.get())->scalar_type;
|
|
TORCH_CHECK(
|
|
storage_scalar_type == scalar_type,
|
|
"Expected Storage of type ",
|
|
scalar_type,
|
|
" but got type ",
|
|
storage_scalar_type,
|
|
" for argument 1 'storage'");
|
|
return new_with_storage(dispatch_key, scalar_type, r.storage(0));
|
|
} else if (r.idx == 2) {
|
|
auto cdata = reinterpret_cast<void*>(r.toInt64(0));
|
|
return at::unsafeTensorFromTH(cdata, true);
|
|
} else if (r.idx == 3) {
|
|
return new_with_tensor(dispatch_key, scalar_type, r.tensor(0));
|
|
} else if (r.idx == 4) {
|
|
PyObject* arg = r.pyobject(0);
|
|
auto deviceOptional = r.deviceOptional(1);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
|
|
// new(sequence) binds to this signature but should be treated differently
|
|
// unless the sequences is a torch.Size
|
|
return legacy_new_from_sequence(dispatch_key, scalar_type, deviceOptional, r.pyobject(0));
|
|
}
|
|
return new_with_sizes(dispatch_key, scalar_type, r.deviceOptional(1), r.intlist(0));
|
|
} else if (r.idx == 5) {
|
|
auto deviceOptional = r.deviceOptional(1);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
return legacy_new_from_sequence(dispatch_key, scalar_type, r.deviceOptional(1), r.pyobject(0));
|
|
}
|
|
throw std::runtime_error("new(): invalid arguments");
|
|
}
|
|
|
|
Tensor indexing_tensor_from_data(
|
|
c10::DispatchKey dispatch_key,
|
|
at::ScalarType scalar_type,
|
|
c10::optional<Device> device,
|
|
PyObject* data) {
|
|
// Specific to tensor indexing, converts an indexing list to an
|
|
// indexing tensor (type Byte or Long)
|
|
ScalarType inferred_scalar_type = infer_scalar_type(data);
|
|
if (inferred_scalar_type == ScalarType::Byte || inferred_scalar_type == ScalarType::Bool) {
|
|
return internal_new_from_data(dispatch_key, inferred_scalar_type, std::move(device), data,
|
|
/*copy_variables=*/false, /*copy_numpy=*/false,
|
|
/*type_inference=*/false);
|
|
} else {
|
|
return internal_new_from_data(dispatch_key, scalar_type, std::move(device), data,
|
|
/*copy_variables=*/false, /*copy_numpy=*/false,
|
|
/*type_inference=*/false);
|
|
}
|
|
}
|
|
|
|
Tensor sparse_coo_tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
static PythonArgParser parser({
|
|
"sparse_coo_tensor(PyObject* indices, PyObject* values, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
|
|
"sparse_coo_tensor(PyObject* indices, PyObject* values, IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
|
|
"sparse_coo_tensor(IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
|
|
});
|
|
|
|
ParsedArgs<6> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
bool type_inference = r.isNone(2);
|
|
const auto inferred_dispatch_key = denseTypeIdWithDefault(r, 3, dispatch_key);
|
|
const auto inferred_scalar_type = r.scalartypeWithDefault(2, scalar_type);
|
|
at::OptionalDeviceGuard device_guard(r.deviceOptional(3));
|
|
// if no dtype provided, infer type based on value type.
|
|
Tensor values = internal_new_from_data(inferred_dispatch_key, inferred_scalar_type, r.deviceOptional(3), r.pyobject(1),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/type_inference);
|
|
Tensor indices = internal_new_from_data(legacyExtractDispatchKey(values.key_set()), kLong, r.deviceOptional(3), r.pyobject(0),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/false);
|
|
return at::sparse_coo_tensor(indices, values, values.options().layout(at::kSparse)).set_requires_grad(r.toBool(4));
|
|
} else if (r.idx == 1) {
|
|
bool type_inference = r.isNone(3);
|
|
const auto inferred_dispatch_key = denseTypeIdWithDefault(r, 4, dispatch_key);
|
|
const auto inferred_scalar_type = r.scalartypeWithDefault(3, scalar_type);
|
|
at::OptionalDeviceGuard device_guard(r.deviceOptional(4));
|
|
Tensor values = internal_new_from_data(inferred_dispatch_key, inferred_scalar_type, r.deviceOptional(4), r.pyobject(1),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/type_inference);
|
|
Tensor indices = internal_new_from_data(legacyExtractDispatchKey(values.key_set()), kLong, r.deviceOptional(4), r.pyobject(0),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/false);
|
|
return at::sparse_coo_tensor(indices, values, r.intlist(2), values.options().layout(at::kSparse)).set_requires_grad(r.toBool(5));
|
|
} else if (r.idx == 2) {
|
|
const auto inferred_dispatch_key = typeIdWithDefault(r, 2, dispatch_key);
|
|
const auto inferred_scalar_type = r.scalartypeWithDefault(1, scalar_type);
|
|
at::OptionalDeviceGuard device_guard(r.deviceOptional(2));
|
|
return at::sparse_coo_tensor(r.intlist(0), options(inferred_dispatch_key, inferred_scalar_type).layout(at::kSparse)).set_requires_grad(r.toBool(3));
|
|
}
|
|
throw std::runtime_error("sparse_coo_tensor(): invalid arguments");
|
|
}
|
|
|
|
Tensor _sparse_coo_tensor_unsafe_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
enum {
|
|
ARG_INDICES = 0,
|
|
ARG_VALUES,
|
|
ARG_SIZE,
|
|
ARG_TYPE,
|
|
ARG_DEVICE,
|
|
ARG_REQUIRES_GRAD,
|
|
ARGS_COUNT
|
|
};
|
|
static PythonArgParser parser({
|
|
"_sparse_coo_tensor_unsafe(PyObject* indices, PyObject* values, IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
|
|
});
|
|
|
|
ParsedArgs<ARGS_COUNT> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
bool type_inference = r.isNone(ARG_TYPE);
|
|
const auto inferred_dispatch_key = denseTypeIdWithDefault(r, ARG_DEVICE, dispatch_key);
|
|
const auto inferred_scalar_type = r.scalartypeWithDefault(ARG_TYPE, scalar_type);
|
|
at::OptionalDeviceGuard device_guard(r.deviceOptional(ARG_DEVICE));
|
|
Tensor values = internal_new_from_data(inferred_dispatch_key, inferred_scalar_type, r.deviceOptional(ARG_DEVICE), r.pyobject(ARG_VALUES),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/type_inference);
|
|
Tensor indices = internal_new_from_data(legacyExtractDispatchKey(values.key_set()), kLong, r.deviceOptional(ARG_DEVICE), r.pyobject(ARG_INDICES),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/false);
|
|
return at::_sparse_coo_tensor_unsafe(indices, values, r.intlist(ARG_SIZE), values.options().layout(at::kSparse)).set_requires_grad(r.toBool(ARG_REQUIRES_GRAD));
|
|
}
|
|
|
|
void _validate_sparse_coo_tensor_args(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
static PythonArgParser parser({
|
|
"_validate_sparse_coo_tensor(PyObject* indices, PyObject* values, IntArrayRef size)",
|
|
});
|
|
|
|
ParsedArgs<3> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
Tensor values = internal_new_from_data(
|
|
dispatch_key, scalar_type, c10::nullopt, r.pyobject(1),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true, /*type_inference=*/true);
|
|
Tensor indices = internal_new_from_data(
|
|
legacyExtractDispatchKey(values.key_set()), kLong, c10::nullopt, r.pyobject(0),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true, /*type_inference=*/false);
|
|
at::native::_validate_sparse_coo_tensor_args(indices, values, r.intlist(2));
|
|
}
|
|
|
|
Tensor tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
static PythonArgParser parser({
|
|
"tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None, bool pin_memory=False, bool requires_grad=False, DimnameList? names=None)",
|
|
});
|
|
|
|
constexpr int ctor_num_args = 6;
|
|
ParsedArgs<ctor_num_args> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
PyObject* data = r.pyobject(0);
|
|
if (THPVariable_Check(data)) {
|
|
PyErr_WarnEx(PyExc_UserWarning,
|
|
"To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() "
|
|
"or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).", 1);
|
|
}
|
|
|
|
bool type_inference = r.isNone(1);
|
|
bool pin_memory = r.toBool(3);
|
|
bool args_requires_grad = r.toBool(4);
|
|
auto new_tensor = internal_new_from_data(
|
|
typeIdWithDefault(r, 2, dispatch_key),
|
|
r.scalartypeWithDefault(1, scalar_type),
|
|
r.deviceOptional(2),
|
|
data,
|
|
/*copy_variables=*/true,
|
|
/*copy_numpy=*/true,
|
|
/*type_inference=*/type_inference,
|
|
pin_memory);
|
|
auto names = r.toDimnameListOptional(5);
|
|
if (names) {
|
|
at::namedinference::propagate_names(new_tensor, *names, /*validate_names=*/true);
|
|
}
|
|
new_tensor.detach_(); // ensure new_tensor a leaf node
|
|
new_tensor.set_requires_grad(args_requires_grad);
|
|
return new_tensor;
|
|
}
|
|
throw std::runtime_error("tensor(): invalid arguments");
|
|
}
|
|
|
|
Tensor as_tensor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
// TODO: add requires_grad once we decide on semantics for sharing data.
|
|
static PythonArgParser parser({
|
|
"as_tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None)",
|
|
});
|
|
|
|
ParsedArgs<3> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
bool type_inference = r.isNone(1);
|
|
return internal_new_from_data(
|
|
typeIdWithDefault(r, 2, dispatch_key),
|
|
r.scalartypeWithDefault(1, scalar_type),
|
|
r.deviceOptional(2),
|
|
r.pyobject(0),
|
|
/*copy_variables=*/false,
|
|
/*copy_numpy=*/false,
|
|
/*type_inference=*/type_inference);
|
|
}
|
|
throw std::runtime_error("tensor(): invalid arguments");
|
|
}
|
|
|
|
Tensor new_tensor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
static PythonArgParser parser({
|
|
"new_tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
|
|
});
|
|
|
|
ParsedArgs<4> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
PyObject* data = r.pyobject(0);
|
|
if (THPVariable_Check(data)) {
|
|
PyErr_WarnEx(PyExc_UserWarning,
|
|
"To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() "
|
|
"or sourceTensor.clone().detach().requires_grad_(True), rather than tensor.new_tensor(sourceTensor).", 1);
|
|
}
|
|
|
|
bool args_requires_grad = r.toBool(3);
|
|
auto new_tensor = new_from_data_copy(
|
|
typeIdWithDefault(r, 2, dispatch_key),
|
|
r.scalartypeWithDefault(1, scalar_type),
|
|
r.deviceOptional(2),
|
|
data);
|
|
new_tensor.detach_(); // ensure new_tensor a leaf node
|
|
new_tensor.set_requires_grad(args_requires_grad);
|
|
return new_tensor;
|
|
}
|
|
throw std::runtime_error("new_tensor(): invalid arguments");
|
|
}
|
|
|
|
Tensor new_ones(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
static PythonArgParser parser({
|
|
"new_ones(IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
|
|
}, /*traceable=*/true);
|
|
|
|
ParsedArgs<4> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
const auto actual_dispatch_key = typeIdWithDefault(r, 2, dispatch_key);
|
|
const auto actual_scalar_type = r.scalartypeWithDefault(1, scalar_type);
|
|
return dispatch_ones(actual_dispatch_key, actual_scalar_type, r.deviceOptional(2), r.intlist(0)).set_requires_grad(r.toBool(3));
|
|
}
|
|
throw std::runtime_error("new_ones(): invalid arguments");
|
|
}
|
|
|
|
}} // namespace torch::utils
|