mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Today when PythonOp throws an exception, we log the error and fail the op. Later we assert that the op/net/plan succeeds and throw with a generic message. The user must ttail the logs to find the real error. Instead, align with exception handling from other ops - throw directly. This will include full context of the exception in the error message. Reviewed By: Yangqing, akyrola Differential Revision: D6359684 fbshipit-source-id: 85133ba6562759607a3971449120647cbacce946
248 lines
9.2 KiB
Python
248 lines
9.2 KiB
Python
# Copyright (c) 2016-present, Facebook, Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
##############################################################################
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
from caffe2.python import core, workspace
|
|
from caffe2.python.core import CreatePythonOperator
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
from hypothesis import given
|
|
import hypothesis.strategies as st
|
|
import numpy as np
|
|
|
|
|
|
def SubFunctionThatThrowsRuntimeError():
|
|
raise RuntimeError("This is an intentional exception.")
|
|
|
|
|
|
def MainOpFunctionThatThrowsRuntimeError(inputs, _):
|
|
return SubFunctionThatThrowsRuntimeError()
|
|
|
|
|
|
def op_builder(name, index, extra):
|
|
iterations = [0]
|
|
assert name == 'name'
|
|
assert index == 5
|
|
assert extra - 4.2 < 0.0001
|
|
|
|
def my_op(inputs, outputs):
|
|
assert inputs[0].data[0] == iterations[0]
|
|
assert name == 'name'
|
|
assert index == 5
|
|
assert extra - 4.2 < 0.0001
|
|
iterations[0] += 1
|
|
|
|
return my_op
|
|
|
|
|
|
class PythonOpTest(hu.HypothesisTestCase):
|
|
@given(x=hu.tensor())
|
|
def test_feed(self, x):
|
|
def f(inputs, _):
|
|
self.assertEqual(x.shape, inputs[0].shape)
|
|
self.assertEqual(type(inputs[0].shape), tuple)
|
|
self.assertEqual(type(inputs[0].data), np.ndarray)
|
|
np.testing.assert_almost_equal(x, inputs[0].data)
|
|
op = CreatePythonOperator(f, ["x"], [])
|
|
workspace.FeedBlob("x", x)
|
|
workspace.RunOperatorOnce(op)
|
|
|
|
def test_exception(self):
|
|
op = CreatePythonOperator(MainOpFunctionThatThrowsRuntimeError, [], [])
|
|
with self.assertRaisesRegexp(
|
|
RuntimeError, "This is an intentional exception."
|
|
):
|
|
workspace.RunOperatorOnce(op)
|
|
|
|
@given(x=hu.tensor())
|
|
def test_feed_with_helper_function(self, x):
|
|
def f(inputs, _):
|
|
self.assertEqual(x.shape, inputs[0].shape)
|
|
self.assertEqual(type(inputs[0].shape), tuple)
|
|
self.assertEqual(type(inputs[0].data), np.ndarray)
|
|
np.testing.assert_almost_equal(x, inputs[0].data)
|
|
net = core.Net("test")
|
|
net.Python(f)(["x"], [])
|
|
workspace.FeedBlob("x", x)
|
|
workspace.RunNetOnce(net)
|
|
|
|
def test_builder_tuple(self):
|
|
net = core.Net("builder_template")
|
|
iter_blob = 'iter'
|
|
net.Python((op_builder, ['name', 5], {'extra': 4.2}))([iter_blob], [])
|
|
net.Python((op_builder, ['name', 5], {'extra': 4.2}))([iter_blob], [])
|
|
for repeat in range(2):
|
|
# check that the builder will be called exactly once for each
|
|
# PythonOp constructor. Cloning the net will also trigger a call
|
|
# to the builder when the net is created.
|
|
cloned_net = net.Clone('builder_%d' % repeat)
|
|
workspace.FeedBlob(iter_blob, np.array([0]))
|
|
# Builder gets called once per python op in the line below
|
|
workspace.CreateNet(cloned_net)
|
|
for i in range(10):
|
|
workspace.FeedBlob(iter_blob, np.array([i]))
|
|
workspace.RunNet(cloned_net)
|
|
|
|
@given(x=hu.tensor())
|
|
def test_feed_with_gc(self, x):
|
|
def f(inputs, _):
|
|
self.assertEqual(x.shape, inputs[0].shape)
|
|
np.testing.assert_almost_equal(x, inputs[0].data)
|
|
op = CreatePythonOperator(f, ["x"], [])
|
|
workspace.FeedBlob("x", x)
|
|
workspace.RunOperatorOnce(op)
|
|
del f
|
|
workspace.FeedBlob("x", x)
|
|
workspace.RunOperatorOnce(op)
|
|
|
|
@given(x=hu.tensor())
|
|
def test_reshape(self, x):
|
|
def f(inputs, outputs):
|
|
outputs[0].reshape(inputs[0].shape)
|
|
self.assertEqual(x.shape, inputs[0].shape)
|
|
self.assertEqual(x.shape, outputs[0].shape)
|
|
outputs[0].data[...] = inputs[0].data
|
|
|
|
op = CreatePythonOperator(f, ["x"], ["y"])
|
|
workspace.FeedBlob("x", x)
|
|
workspace.RunOperatorOnce(op)
|
|
y = workspace.FetchBlob("y")
|
|
np.testing.assert_almost_equal(x, y)
|
|
|
|
@given(x=hu.tensor())
|
|
def test_workspace_manipulation(self, x):
|
|
"""
|
|
Verify that python op can manipulate workspace directly
|
|
"""
|
|
def f(inputs, outputs, ws):
|
|
fetched = ws.blobs['internal'].fetch()
|
|
np.testing.assert_almost_equal(fetched, x)
|
|
|
|
ws = workspace.C.Workspace()
|
|
net = core.Net("test")
|
|
net.GivenTensorFill([], ['internal'], values=x, shape=x.shape)
|
|
net.Python(f, pass_workspace=True)([], [])
|
|
ws.run(net)
|
|
|
|
@given(x=hu.tensor())
|
|
def test_caught_exception_doesnt_terminate(self, x):
|
|
def f(inputs, outputs):
|
|
try:
|
|
raise Exception("Exception in handler")
|
|
except Exception:
|
|
pass
|
|
|
|
op = CreatePythonOperator(f, ["x"], ["y"])
|
|
workspace.FeedBlob("x", x)
|
|
workspace.RunOperatorOnce(op)
|
|
|
|
@given(x=hu.tensor(),
|
|
n=st.integers(min_value=1, max_value=20),
|
|
w=st.integers(min_value=1, max_value=20))
|
|
def test_multithreaded_evaluation(self, x, n, w):
|
|
def f(inputs, outputs):
|
|
outputs[0].reshape(inputs[0].shape)
|
|
outputs[0].data[...] = inputs[0].data
|
|
ops = [CreatePythonOperator(f, ["x"], [str(i)]) for i in range(n)]
|
|
net = core.Net("net")
|
|
net.Proto().op.extend(ops)
|
|
net.Proto().type = "dag"
|
|
net.Proto().num_workers = w
|
|
iters = 100
|
|
plan = core.Plan("plan")
|
|
plan.AddStep(core.ExecutionStep("test-step", net, iters))
|
|
workspace.FeedBlob("x", x)
|
|
workspace.RunPlan(plan.Proto().SerializeToString())
|
|
for i in range(n):
|
|
y = workspace.FetchBlob(str(i))
|
|
np.testing.assert_almost_equal(x, y)
|
|
|
|
@given(x=hu.tensor(), in_place=st.booleans(), **hu.gcs)
|
|
def test_gradient(self, x, in_place, gc, dc):
|
|
def f(inputs, outputs):
|
|
outputs[0].reshape(inputs[0].shape)
|
|
outputs[0].data[...] = inputs[0].data * 2
|
|
|
|
def grad_f(inputs, outputs):
|
|
# Ordering is [inputs, outputs, grad_outputs]
|
|
grad_output = inputs[2]
|
|
|
|
grad_input = outputs[0]
|
|
grad_input.reshape(grad_output.shape)
|
|
grad_input.data[...] = grad_output.data * 2
|
|
|
|
op = CreatePythonOperator(
|
|
f, ["x"], ["x" if in_place else "y"], grad_f=grad_f)
|
|
self.assertGradientChecks(gc, op, [x], 0, [0])
|
|
self.assertDeviceChecks(dc, op, [x], [0])
|
|
|
|
@given(inputs=hu.tensors(n=2), **hu.gcs)
|
|
def test_gradient_multiple(self, inputs, gc, dc):
|
|
(x1, x2) = inputs
|
|
|
|
def f(inputs, outputs):
|
|
for idx in [0, 1]:
|
|
self.assertEqual(type(inputs[idx].shape), tuple)
|
|
outputs[idx].reshape(inputs[idx].shape)
|
|
outputs[idx].data[...] = inputs[idx].data * 2
|
|
|
|
def grad_f(inputs, outputs):
|
|
# Ordering is [inputs, outputs, grad_outputs]
|
|
self.assertEqual(len(inputs), 6)
|
|
self.assertEqual(len(outputs), 2)
|
|
for (grad_output_idx, grad_input_idx) in [(4, 0), (5, 1)]:
|
|
grad_output = inputs[grad_output_idx]
|
|
grad_input = outputs[grad_input_idx]
|
|
grad_input.reshape(grad_output.shape)
|
|
grad_input.data[...] = grad_output.data * 2
|
|
|
|
op = CreatePythonOperator(f, ["x1", "x2"], ["y1", "y2"], grad_f=grad_f)
|
|
|
|
for idx in [0, 1]:
|
|
self.assertGradientChecks(gc, op, [x1, x2], idx, [0, 1])
|
|
self.assertDeviceChecks(dc, op, [x1, x2], [0, 1])
|
|
|
|
@given(inputs=hu.tensors(n=3), **hu.gcs)
|
|
def test_gradient_multiple_with_indices(self, inputs, gc, dc):
|
|
(x1, x2, x3) = inputs
|
|
|
|
def f(inputs, outputs):
|
|
for idx in [0, 1, 2]:
|
|
self.assertEqual(type(inputs[idx].shape), tuple)
|
|
outputs[idx].reshape(inputs[idx].shape)
|
|
outputs[idx].data[...] = inputs[idx].data * 2
|
|
|
|
def grad_f(inputs, outputs):
|
|
# Ordering is [inputs, outputs, grad_outputs]
|
|
self.assertEqual(len(inputs), 8)
|
|
self.assertEqual(len(outputs), 1)
|
|
for (grad_output_idx, grad_input_idx) in [(6, 0)]:
|
|
grad_output = inputs[grad_output_idx]
|
|
grad_input = outputs[grad_input_idx]
|
|
grad_input.reshape(grad_output.shape)
|
|
grad_input.data[...] = grad_output.data * 2
|
|
|
|
op = CreatePythonOperator(
|
|
f, ["x1", "x2", "x3"], ["y1", "y2", "y3"],
|
|
grad_f=grad_f,
|
|
grad_output_indices=[0, 2], # Receive grad outputs for y1 and y3
|
|
grad_input_indices=[0] # Produce grad inputs for x1
|
|
)
|
|
|
|
self.assertGradientChecks(gc, op, [x1, x2, x3], 0, [0, 2])
|
|
self.assertDeviceChecks(dc, op, [x1, x2, x3], [0, 1, 2])
|