pytorch/torch/cuda/comm.py
2016-09-30 16:37:07 -04:00

81 lines
3.2 KiB
Python

import torch
from torch._utils import _accumulate
# TODO: sync streams when implemented
# TODO: use nccl for broadcast and reduce_add
def broadcast(tensor, devices):
"Broadcasts a tensor to a number of GPUs"
# TODO: copy to a pinned buffer first (if copy is from CPU)
return tuple(tensor.cuda(gpu, async=True) for gpu in devices)
def reduce_add(inputs, destination=None):
"Reduces tensors from multiple GPUs and returns a result a specified device"
# TODO: try to find an input on another gpu, copy it,
# and accumulate into the copy
input_size = inputs[0].size()
for i, inp in enumerate(inputs):
assert inp.is_cuda, "reduce_add expects all inputs to be on GPUs"
if not inp.is_size(input_size):
raise ValueError("input {} has invalid size: got {}, but expected {}"
.format('x'.join(inp.size()), 'x'.join(input_size)))
if destination is None:
destination = torch.cuda.current_device()
with torch.cuda.device(destination):
result = type(inp)(input_size).zero_()
for inp in inputs:
input_correct_gpu = inp.cuda(result.get_device())
result.add_(input_correct_gpu)
return result
def scatter(tensor, devices, chunk_sizes=None, dim=0):
"Scatters tensor across multiple GPUs"
if chunk_sizes is None:
chunks = tensor.chunk(len(devices), dim)
else:
assert sum(chunk_sizes) == tensor.size(dim), "given chunk sizes " \
"don't sum up to the tensor's size (sum(chunk_sizes) == {}, but " \
"expected {})".format(sum(chunk_sizes), tensor.size(dim))
assert min(chunk_sizes) > 0, "got a negative chunk_size"
chunks = [tensor.narrow(dim, start - size, size)
for start, size in zip(_accumulate(chunk_sizes), chunk_sizes)]
# TODO: copy to a pinned buffer first (if copying from CPU)
return tuple(chunk.cuda(gpu_id, async=chunk.is_contiguous())
for gpu_id, chunk in zip(devices, chunks))
def gather(tensors, dim=0, destination=None):
"""Gathers tensors from multiple GPUs (destination == -1, places the result
on CPU)
"""
total_size = 0
expected_size = tensors[0].size()
for tensor in tensors:
assert tensor.is_cuda, "gather expects all inputs to be on GPUs"
expected_size[dim] = tensor.size(dim)
if not tensor.is_size(expected_size):
got = 'x'.join(tensor.size())
expected = 'x'.join(expected_size)
raise ValueError("gather got an input of invalid size: got {}, "
"but expected {}".format(got, expected))
total_size += tensor.size(dim)
expected_size[dim] = total_size
if destination is None:
destination = torch.cuda.current_device()
if destination == -1:
result = getattr(torch, type(tensors[0]).__name__)(expected_size)
else:
with torch.cuda.device(destination):
result = type(tensors[0])(expected_size)
chunk_start = 0
# TODO: if copying to CPU, allocate a pinned buffer, do async copies to it,
# and copy it to regular memory
for tensor in tensors:
result.narrow(dim, chunk_start, tensor.size(dim)).copy_(tensor, True)
chunk_start += tensor.size(dim)
return result