pytorch/torch/csrc/cuda/utils.cpp
gchanan 1172b152ab
move THCP-related utils to cuda/utils.cpp. (#8221)
These files don't follow the usual pattern: In general the files torch/csrc/X torch/csrc/cuda/X
both include the generic file torch/csrc/generic/X, where torch/csrc/X includes the cpu implementations and torch/csrc/cuda/X includes the cuda implementations.
(Aside: this is probably not the best structure, the torch/csrc/X fiels should probably be moved to torch/csrc/cpu/X).

utils.cpp combines these so that torch/csrc/utils.cpp has cuda specific code.  This makes it impossible to declare a single THTensor and THCTensor template type (i.e. THPPointer<_THTensor>, THPointer<_THCTensor>).
2018-06-06 20:58:57 -04:00

37 lines
1.1 KiB
C++

#include "torch/csrc/python_headers.h"
#include <stdarg.h>
#include <string>
#include "THCP.h"
#include "override_macros.h"
#define THC_GENERIC_FILE "torch/csrc/generic/utils.cpp"
#include <THC/THCGenerateAllTypes.h>
#ifdef WITH_CUDA
std::vector <THCStream*> THPUtils_PySequence_to_THCStreamList(PyObject *obj) {
if (!PySequence_Check(obj)) {
throw std::runtime_error("Expected a sequence in THPUtils_PySequence_to_THCStreamList");
}
THPObjectPtr seq = THPObjectPtr(PySequence_Fast(obj, NULL));
if (seq.get() == NULL) {
throw std::runtime_error("expected PySequence, but got " + std::string(THPUtils_typename(obj)));
}
std::vector<THCStream*> streams;
Py_ssize_t length = PySequence_Fast_GET_SIZE(seq.get());
for (Py_ssize_t i = 0; i < length; i++) {
PyObject *stream = PySequence_Fast_GET_ITEM(seq.get(), i);
if (PyObject_IsInstance(stream, THCPStreamClass)) {
streams.push_back( ((THCPStream *)stream)->cdata);
} else if (stream == Py_None) {
streams.push_back(NULL);
} else {
std::runtime_error("Unknown data type found in stream list. Need THCStream or None");
}
}
return streams;
}
#endif