pytorch/torch/csrc/jit/python/pybind_utils.cpp
Meghan Lele d9d7d5e24a [torch] Remove migration warning for ScriptDict
Summary:
This commit removes the warning that suggests that users script their
dictionaries before passing them into TorchScript code. The ScriptDict feature
is not fully ready, so it does not make sense to recommend this yet.

Test Plan:
Sandcastle.

In addition, the PyPER test broken by the original diff passes:

```
buck test mode/opt //caffe2/torch/fb/training_toolkit/backend/tests:test_model_materializer_full_sync_lwt -- --exact 'caffe2/torch/fb/training_toolkit/backend/tests:test_model_materializer_full_sync_lwt - caffe2.torch.fb.training_toolkit.backend.tests.test_model_materializer_full_sync_lwt.ModelMaterializerFullSyncLwtTest: test_materialization_determinism_cpu' --run-disabled
```

Differential Revision: D28891351

fbshipit-source-id: 2a3a00cde935d670fb1dc7fd8c709ae9c2ad8cdc
2021-06-03 20:55:40 -07:00

318 lines
12 KiB
C++

#include <torch/csrc/jit/python/pybind_utils.h>
#include <torch/csrc/jit/python/python_dict.h>
#include <torch/csrc/jit/python/python_ivalue.h>
#include <c10/util/irange.h>
namespace torch {
namespace jit {
// This is a hack to remove instances deleted in C++ from the PyBind cache
// C++->Python. We need this because otherwise we may get the old Python object
// if C++ creates a new object at the memory location of the deleted object.
void clear_registered_instances(void* ptr) {
auto& registered_instances =
pybind11::detail::get_internals().registered_instances;
auto range = registered_instances.equal_range(ptr);
for (auto it = range.first; it != range.second; ++it) {
auto vh = it->second->get_value_and_holder();
vh.set_instance_registered(false);
}
registered_instances.erase(ptr);
}
IValue toIValue(py::handle obj, const TypePtr& type, c10::optional<int32_t> N) {
switch (type->kind()) {
case TypeKind::TensorType: {
auto var = py::cast<autograd::Variable>(obj);
if (var.is_sparse()) {
TORCH_WARN_ONCE(
"Using sparse tensors in TorchScript is experimental. Many optimization "
"pathways have not been thoroughly tested with sparse tensors. Please "
"include the fact that the network is running sparse tensors in any bug "
"reports submitted.");
}
guardAgainstNamedTensor<autograd::Variable>(var);
return var;
}
case TypeKind::FloatType:
return py::cast<double>(obj);
case TypeKind::ComplexType: {
auto c_obj = py::cast<std::complex<double>>(obj.ptr());
return static_cast<c10::complex<double>>(c_obj);
}
case TypeKind::IntType:
// TODO(xintchen): Handling LayoutType and ScalarTypeType correctly.
case TypeKind::LayoutType:
case TypeKind::ScalarTypeType:
if (THPDtype_Check(obj.ptr())) {
auto dtype = reinterpret_cast<THPDtype*>(obj.ptr());
return static_cast<int64_t>(dtype->scalar_type);
}
if (THPQScheme_Check(obj.ptr())) {
auto qscheme = reinterpret_cast<THPQScheme*>(obj.ptr());
return static_cast<uint8_t>(qscheme->qscheme);
}
if (THPLayout_Check(obj.ptr())) {
auto layout = reinterpret_cast<THPLayout*>(obj.ptr());
return static_cast<int8_t>(layout->layout);
}
return py::cast<int64_t>(obj);
case TypeKind::NoneType:
if (!obj.is_none()) {
throw py::cast_error(
c10::str("Cannot cast ", py::str(obj), " to None"));
}
return {};
case TypeKind::BoolType:
return py::cast<bool>(obj);
case TypeKind::TupleType: {
py::tuple tuple = py::cast<py::tuple>(obj);
size_t tuple_size = tuple.size();
auto tuple_type = type->cast<TupleType>();
const auto& elem_types = tuple_type->elements();
if (elem_types.size() != tuple_size) {
throw py::cast_error(c10::str(
"Object ",
py::str(obj),
" had a different number of elements than type ",
type->repr_str()));
}
std::vector<IValue> values;
values.reserve(tuple_size);
for (size_t i = 0; i < tuple_size; ++i) {
values.push_back(toIValue(tuple[i], elem_types[i]));
}
return tuple_type->name()
? c10::ivalue::Tuple::createNamed(std::move(values), tuple_type)
: c10::ivalue::Tuple::create(std::move(values));
}
case TypeKind::StringType:
return ConstantString::create(py::cast<std::string>(obj));
case TypeKind::DeviceObjType: {
if (THPDevice_Check(obj.ptr())) {
auto device = reinterpret_cast<THPDevice*>(obj.ptr());
return device->device;
}
return c10::Device(py::cast<std::string>(obj.ptr()));
}
case TypeKind::StreamObjType: {
auto stream = reinterpret_cast<THPStream*>(obj.ptr());
return static_cast<int64_t>(stream->cdata);
}
case TypeKind::ListType: {
const auto& elem_type = type->expectRef<ListType>().getElementType();
switch (elem_type->kind()) {
// allows single int/float to be broadcasted to a fixed size list
case TypeKind::IntType:
if (!N || !py::isinstance<py::int_>(obj)) {
return IValue(py::cast<std::vector<int64_t>>(obj));
} else {
int64_t value = py::cast<int64_t>(obj);
c10::List<int64_t> repeated;
repeated.reserve(*N);
for (int i = 0; i < *N; ++i) {
repeated.push_back(value);
}
return repeated;
}
case TypeKind::FloatType:
if (!N || !py::isinstance<py::float_>(obj)) {
return IValue(py::cast<std::vector<double>>(obj));
} else {
double value = py::cast<double>(obj);
c10::List<double> repeated;
repeated.reserve(*N);
for (int i = 0; i < *N; ++i) {
repeated.push_back(value);
}
return repeated;
}
case TypeKind::BoolType:
return IValue(py::cast<std::vector<bool>>(obj));
case TypeKind::TensorType:
return IValue(py::cast<std::vector<at::Tensor>>(obj));
default:
return createGenericList(obj, elem_type);
}
}
case TypeKind::DictType: {
const auto& dict_type = type->expect<DictType>();
// If the object is a ScriptDict, retrieve the c10::Dict
// instance inside it.
try {
auto script_dict = py::cast<ScriptDict>(obj);
return script_dict.dict_;
} catch (py::cast_error& e) {
}
// If not (i.e. it is a regular Python dictionary), make a new
// c10::Dict.
return createGenericDict(
py::cast<py::dict>(obj),
dict_type->getKeyType(),
dict_type->getValueType());
}
case TypeKind::OptionalType: {
// check if it's a none obj since optional accepts NoneType
if (obj.is_none()) {
// check if it's a none obj since optional accepts NoneType
// return an IValue() to denote a NoneType
return {};
}
return toIValue(obj, type->expectRef<OptionalType>().getElementType());
}
case TypeKind::ClassType: {
auto classType = type->expect<ClassType>();
if (auto mod = as_module(py::cast<py::object>(obj))) {
// if obj is already a ScriptModule, just return its ivalue
return mod.value()._ivalue();
}
// otherwise is a normal class object, we create a fresh
// ivalue::Object to use from the py object.
// 1. create a bare ivalue
const size_t numAttrs = classType->numAttributes();
auto cu = classType->compilation_unit();
auto userObj = c10::ivalue::Object::create(
c10::StrongTypePtr(cu, classType), numAttrs);
// 2. copy all the contained types
for (const auto slot : c10::irange(numAttrs)) {
const auto& attrType = classType->getAttribute(slot);
const auto& attrName = classType->getAttributeName(slot);
if (!py::hasattr(obj, attrName.c_str())) {
throw py::cast_error(c10::str(
"Tried to cast object to type ",
type->repr_str(),
" but object",
" was missing attribute ",
attrName));
}
try {
const auto& contained = py::getattr(obj, attrName.c_str());
userObj->setSlot(slot, toIValue(contained, attrType));
} catch (std::exception& e) {
throw py::cast_error(c10::str(
"Could not cast attribute '",
attrName,
"' to type ",
attrType->repr_str(),
": ",
e.what()));
}
}
return userObj;
}
case TypeKind::InterfaceType: {
auto interfaceType = type->expect<InterfaceType>();
// When converting an pyobj to an interface, we check if rhs
// is module or normal torchscript class, get the type and ivalue
// from them correspondingly.
c10::ClassTypePtr classType = nullptr;
IValue res;
if (auto mod = as_module(py::cast<py::object>(obj))) {
classType = mod.value().type();
res = mod.value()._ivalue();
} else {
// We inspect the value to found the compiled TorchScript class
// and then create a ivalue::Object from that class type.
py::str qualified_name = py::module::import("torch._jit_internal")
.attr("_qualified_name")(obj.get_type());
auto pyCu = get_python_cu();
classType = pyCu->get_class(c10::QualifiedName(qualified_name));
if (!classType) {
throw std::runtime_error(c10::str(
"Assigning the object ",
py::str(obj),
" to an interface fails because the value is not "
"a TorchScript compatible type, did you forget to",
"turn it into a user defined TorchScript class?"));
}
res = toIValue(obj, classType);
}
// check if the classType conform with the interface or not
std::stringstream why_not;
if (!classType->isSubtypeOfExt(interfaceType, &why_not)) {
throw py::cast_error(c10::str(
"Object ",
py::str(obj),
" is not compatible with interface ",
interfaceType->repr_str(),
"\n",
why_not.str()));
}
return res;
}
case TypeKind::NumberType: {
if (THPDtype_Check(obj.ptr())) {
auto dtype = reinterpret_cast<THPDtype*>(obj.ptr());
return static_cast<int64_t>(dtype->scalar_type);
}
if (THPQScheme_Check(obj.ptr())) {
auto qscheme = reinterpret_cast<THPQScheme*>(obj.ptr());
return static_cast<uint8_t>(qscheme->qscheme);
}
if (THPLayout_Check(obj.ptr())) {
auto layout = reinterpret_cast<THPLayout*>(obj.ptr());
return static_cast<int8_t>(layout->layout);
}
if (py::isinstance<py::int_>(obj)) {
return py::cast<int64_t>(obj);
} else if (py::isinstance<py::float_>(obj)) {
return py::cast<double>(obj);
} else if (PyComplex_CheckExact(obj.ptr())) {
auto c_obj = py::cast<std::complex<double>>(obj.ptr());
return static_cast<c10::complex<double>>(c_obj);
} else {
throw py::cast_error(
c10::str("Cannot cast ", py::str(obj), " to ", type->repr_str()));
}
}
case TypeKind::RRefType: {
#ifdef USE_RPC
return obj.cast<torch::distributed::rpc::PyRRef>().toIValue();
#else
AT_ERROR("RRef is only supported with the distributed package");
#endif
} break;
case TypeKind::PyObjectType: {
return c10::ivalue::ConcretePyObjectHolder::create(obj);
}
case TypeKind::CapsuleType: {
return IValue::make_capsule(py::cast<c10::Capsule>(obj).obj_ptr);
}
case TypeKind::FutureType: {
return obj.cast<std::shared_ptr<PythonFutureWrapper>>()->fut;
}
case TypeKind::AnyType:
return toTypeInferredIValue(obj);
case TypeKind::FunctionType:
case TypeKind::GeneratorType:
case TypeKind::StorageType:
case TypeKind::QuantizerType:
case TypeKind::VarType:
case TypeKind::QSchemeType:
case TypeKind::AnyListType:
case TypeKind::AnyTupleType:
case TypeKind::AnyClassType:
case TypeKind::AnyEnumType:
break;
case TypeKind::EnumType:
EnumTypePtr enum_type = type->expect<EnumType>();
py::object py_obj = py::reinterpret_borrow<py::object>(obj);
std::string name = py::cast<std::string>(obj.attr("name"));
IValue value = toIValue(obj.attr("value"), enum_type->getValueType(), {});
auto enum_holder =
c10::make_intrusive<c10::ivalue::EnumHolder>(enum_type, name, value);
return IValue(enum_holder);
}
throw py::cast_error(c10::str(
"toIValue() cannot handle converting to type: ", type->repr_str()));
}
} // namespace jit
} // namespace torch