mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Closes https://github.com/pytorch/pytorch/issues/18724 Pull Request resolved: https://github.com/pytorch/pytorch/pull/19089 Differential Revision: D16073654 Pulled By: ezyang fbshipit-source-id: 5642179651ce45ab7c5a46cc1fcc4fd6b37fa71c
168 lines
3.6 KiB
Python
168 lines
3.6 KiB
Python
from ... import Tensor
|
|
from .. import Parameter
|
|
from .module import Module
|
|
from typing import Any, Optional
|
|
|
|
|
|
class Threshold(Module):
|
|
threshold: float = ...
|
|
value: float = ...
|
|
inplace: bool = ...
|
|
|
|
def __init__(self, threshold: float, value: float, inplace: bool = ...) -> None: ...
|
|
|
|
def forward(self, input: Tensor) -> Tensor: ...
|
|
|
|
|
|
class ReLU(Threshold):
|
|
def __init__(self, inplace: bool = ...) -> None: ...
|
|
|
|
|
|
class RReLU(Module):
|
|
lower: float = ...
|
|
upper: float = ...
|
|
inplace: bool = ...
|
|
|
|
def __init__(self, lower: float = ..., upper: float = ..., inplace: bool = ...) -> None: ...
|
|
|
|
def forward(self, input: Tensor) -> Tensor: ...
|
|
|
|
|
|
class Hardtanh(Module):
|
|
min_val: float = ...
|
|
max_val: float = ...
|
|
inplace: bool = ...
|
|
|
|
def __init__(self, min_val: float = ..., max_val: float = ..., inplace: bool = ...) -> None: ...
|
|
|
|
def forward(self, input: Tensor) -> Tensor: ...
|
|
|
|
|
|
class ReLU6(Hardtanh):
|
|
def __init__(self, inplace: bool = ...) -> None: ...
|
|
|
|
|
|
class Sigmoid(Module):
|
|
def forward(self, input: Tensor) -> Tensor: ...
|
|
|
|
|
|
class Tanh(Module):
|
|
def forward(self, input: Tensor) -> Tensor: ...
|
|
|
|
|
|
class ELU(Module):
|
|
alpha: float = ...
|
|
inplace: bool = ...
|
|
|
|
def __init__(self, alpha: float = ..., inplace: bool = ...) -> None: ...
|
|
|
|
def forward(self, input: Tensor) -> Tensor: ...
|
|
|
|
|
|
class CELU(Module):
|
|
alpha: float = ...
|
|
inplace: bool = ...
|
|
|
|
def __init__(self, alpha: float = ..., inplace: bool = ...) -> None: ...
|
|
|
|
def forward(self, input: Tensor) -> Tensor: ...
|
|
|
|
|
|
class SELU(Module):
|
|
inplace: bool = ...
|
|
|
|
def __init__(self, inplace: bool = ...) -> None: ...
|
|
|
|
def forward(self, input: Tensor) -> Tensor: ...
|
|
|
|
|
|
class GLU(Module):
|
|
dim: int = ...
|
|
|
|
def __init__(self, dim: int = ...) -> None: ...
|
|
|
|
def forward(self, input: Tensor) -> Tensor: ...
|
|
|
|
|
|
class Hardshrink(Module):
|
|
lambd: float = ...
|
|
|
|
def __init__(self, lambd: float = ...) -> None: ...
|
|
|
|
def forward(self, input: Tensor) -> Tensor: ...
|
|
|
|
|
|
class LeakyReLU(Module):
|
|
negative_slope: float = ...
|
|
inplace: bool = ...
|
|
|
|
def __init__(self, negative_slope: float = ..., inplace: bool = ...) -> None: ...
|
|
|
|
def forward(self, input: Tensor) -> Tensor: ...
|
|
|
|
|
|
class LogSigmoid(Module):
|
|
def forward(self, input: Tensor) -> Tensor: ...
|
|
|
|
|
|
class Softplus(Module):
|
|
beta: float = ...
|
|
threshold: float = ...
|
|
|
|
def __init__(self, beta: float = ..., threshold: float = ...) -> None: ...
|
|
|
|
def forward(self, input: Tensor) -> Tensor: ...
|
|
|
|
|
|
class Softshrink(Module):
|
|
lambd: float = ...
|
|
|
|
def __init__(self, lambd: float = ...) -> None: ...
|
|
|
|
def forward(self, input: Tensor) -> Tensor: ...
|
|
|
|
|
|
class PReLU(Module):
|
|
num_parameters: int = ...
|
|
weight: Parameter = ...
|
|
|
|
def __init__(self, num_parameters: int = ..., init: float = ...) -> None: ...
|
|
|
|
def forward(self, input: Tensor) -> Tensor: ...
|
|
|
|
|
|
class Softsign(Module):
|
|
def forward(self, input: Tensor) -> Tensor: ...
|
|
|
|
|
|
class Tanhshrink(Module):
|
|
def forward(self, input: Tensor) -> Tensor: ...
|
|
|
|
|
|
class Softmin(Module):
|
|
dim: int = ...
|
|
|
|
def __init__(self, dim: Optional[int] = ...) -> None: ...
|
|
|
|
def forward(self, input: Tensor) -> Tensor: ...
|
|
|
|
|
|
class Softmax(Module):
|
|
dim: int = ...
|
|
|
|
def __init__(self, dim: Optional[int] = ...) -> None: ...
|
|
|
|
def forward(self, input: Tensor) -> Tensor: ...
|
|
|
|
|
|
class Softmax2d(Module):
|
|
def forward(self, input: Tensor) -> Tensor: ...
|
|
|
|
|
|
class LogSoftmax(Module):
|
|
dim: int = ...
|
|
|
|
def __init__(self, dim: Optional[int] = ...) -> None: ...
|
|
|
|
def forward(self, input: Tensor) -> Tensor: ...
|