pytorch/torch/nn/modules/activation.pyi.in
Jon Malmaud bfeff1eb8f Stubs for torch.nn (#19089)
Summary:
Closes https://github.com/pytorch/pytorch/issues/18724
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19089

Differential Revision: D16073654

Pulled By: ezyang

fbshipit-source-id: 5642179651ce45ab7c5a46cc1fcc4fd6b37fa71c
2019-07-01 09:50:17 -07:00

168 lines
3.6 KiB
Python

from ... import Tensor
from .. import Parameter
from .module import Module
from typing import Any, Optional
class Threshold(Module):
threshold: float = ...
value: float = ...
inplace: bool = ...
def __init__(self, threshold: float, value: float, inplace: bool = ...) -> None: ...
def forward(self, input: Tensor) -> Tensor: ...
class ReLU(Threshold):
def __init__(self, inplace: bool = ...) -> None: ...
class RReLU(Module):
lower: float = ...
upper: float = ...
inplace: bool = ...
def __init__(self, lower: float = ..., upper: float = ..., inplace: bool = ...) -> None: ...
def forward(self, input: Tensor) -> Tensor: ...
class Hardtanh(Module):
min_val: float = ...
max_val: float = ...
inplace: bool = ...
def __init__(self, min_val: float = ..., max_val: float = ..., inplace: bool = ...) -> None: ...
def forward(self, input: Tensor) -> Tensor: ...
class ReLU6(Hardtanh):
def __init__(self, inplace: bool = ...) -> None: ...
class Sigmoid(Module):
def forward(self, input: Tensor) -> Tensor: ...
class Tanh(Module):
def forward(self, input: Tensor) -> Tensor: ...
class ELU(Module):
alpha: float = ...
inplace: bool = ...
def __init__(self, alpha: float = ..., inplace: bool = ...) -> None: ...
def forward(self, input: Tensor) -> Tensor: ...
class CELU(Module):
alpha: float = ...
inplace: bool = ...
def __init__(self, alpha: float = ..., inplace: bool = ...) -> None: ...
def forward(self, input: Tensor) -> Tensor: ...
class SELU(Module):
inplace: bool = ...
def __init__(self, inplace: bool = ...) -> None: ...
def forward(self, input: Tensor) -> Tensor: ...
class GLU(Module):
dim: int = ...
def __init__(self, dim: int = ...) -> None: ...
def forward(self, input: Tensor) -> Tensor: ...
class Hardshrink(Module):
lambd: float = ...
def __init__(self, lambd: float = ...) -> None: ...
def forward(self, input: Tensor) -> Tensor: ...
class LeakyReLU(Module):
negative_slope: float = ...
inplace: bool = ...
def __init__(self, negative_slope: float = ..., inplace: bool = ...) -> None: ...
def forward(self, input: Tensor) -> Tensor: ...
class LogSigmoid(Module):
def forward(self, input: Tensor) -> Tensor: ...
class Softplus(Module):
beta: float = ...
threshold: float = ...
def __init__(self, beta: float = ..., threshold: float = ...) -> None: ...
def forward(self, input: Tensor) -> Tensor: ...
class Softshrink(Module):
lambd: float = ...
def __init__(self, lambd: float = ...) -> None: ...
def forward(self, input: Tensor) -> Tensor: ...
class PReLU(Module):
num_parameters: int = ...
weight: Parameter = ...
def __init__(self, num_parameters: int = ..., init: float = ...) -> None: ...
def forward(self, input: Tensor) -> Tensor: ...
class Softsign(Module):
def forward(self, input: Tensor) -> Tensor: ...
class Tanhshrink(Module):
def forward(self, input: Tensor) -> Tensor: ...
class Softmin(Module):
dim: int = ...
def __init__(self, dim: Optional[int] = ...) -> None: ...
def forward(self, input: Tensor) -> Tensor: ...
class Softmax(Module):
dim: int = ...
def __init__(self, dim: Optional[int] = ...) -> None: ...
def forward(self, input: Tensor) -> Tensor: ...
class Softmax2d(Module):
def forward(self, input: Tensor) -> Tensor: ...
class LogSoftmax(Module):
dim: int = ...
def __init__(self, dim: Optional[int] = ...) -> None: ...
def forward(self, input: Tensor) -> Tensor: ...