mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23804 `output = tensor.align_to(names)` returns a view of `tensor` such that `output.names = names`. Dimensions with the same names in `tensor` and `output` have the same sizes; dimensions with new names have size 1. The following must be true for this operation to succeed: 1) tensor.names must be a subsequence (not necessarily contiguous) of `names` 2) Aligning tensor.names to names must not change the absolute position from the right of any unnamed dimension. In practice, these constraints mean that aligning cannot transpose names. Some examples: - Tensor[C].align_to(C) -> Tensor[C] - Tensor[N].align_to([N, C]) -> Tensor[N, C] - Tensor[H, W].align_to([N, H, W, C]) -> Tensor[N, H, W, C] - Tensor[None].align_to([N, None]) -> Tensor[N, None] - Tensor[N].align_to([N, None None]) -> Tensor[N, None, None] Examples of error cases: - Tensor[W, H].align_to([N, H, W, C]) -> Error (not a subsequence) - Tensor[None, H].align_to([None, H, W]) -> Error (would change the absolute position from the right of a None dimension) `torch.align_tensors(*tensors)` aligns the named dimensions of each tensor according to the alignment rules so that they can be used in an operation. More concretely, it aligns each tensor to the longest names among the names of the tensors in `tensors`. This allows users to emulate "broadcasting by names", which is one of the things named tensors tries to enable. Here is an example: ``` imgs: Tensor[N, C, H, W] scale: Tensor[N] // Doesn't work because we do broadcasting by alignment by default imgs * scale // Does work imgs, scale = torch.align_tensors(imgs, scale) imas * scale ``` Future: - Consider allowing broadcasting by names by default. Test Plan: - The diff looks pretty large but more than half of it is testing. - new tests [namedtensor ci] Differential Revision: D16657927 Pulled By: zou3519 fbshipit-source-id: e2f958bf5146c8ee3b694aba57d21b08e928a4e6
836 lines
34 KiB
Python
836 lines
34 KiB
Python
import torch
|
|
import torch.nn.functional as F
|
|
from torch._six import inf
|
|
from itertools import product
|
|
import warnings
|
|
|
|
__all__ = [
|
|
'align_tensors', # BUILD_NAMEDTENSOR only
|
|
'broadcast_tensors',
|
|
'cartesian_prod',
|
|
'chain_matmul',
|
|
'einsum',
|
|
'gels',
|
|
'isfinite',
|
|
'isinf',
|
|
'lu',
|
|
'lu_unpack',
|
|
'norm',
|
|
'meshgrid',
|
|
'split',
|
|
'stft',
|
|
'tensordot',
|
|
'unique',
|
|
'unique_consecutive',
|
|
]
|
|
|
|
|
|
def broadcast_tensors(*tensors):
|
|
r"""broadcast_tensors(*tensors) -> List of Tensors
|
|
|
|
Broadcasts the given tensors according to :ref:`broadcasting-semantics`.
|
|
|
|
Args:
|
|
*tensors: any number of tensors of the same type
|
|
|
|
.. warning::
|
|
|
|
More than one element of a broadcasted tensor may refer to a single
|
|
memory location. As a result, in-place operations (especially ones that
|
|
are vectorized) may result in incorrect behavior. If you need to write
|
|
to the tensors, please clone them first.
|
|
|
|
Example::
|
|
|
|
>>> x = torch.arange(3).view(1, 3)
|
|
>>> y = torch.arange(2).view(2, 1)
|
|
>>> a, b = torch.broadcast_tensors(x, y)
|
|
>>> a.size()
|
|
torch.Size([2, 3])
|
|
>>> a
|
|
tensor([[0, 1, 2],
|
|
[0, 1, 2]])
|
|
"""
|
|
return torch._C._VariableFunctions.broadcast_tensors(tensors)
|
|
|
|
|
|
def split(tensor, split_size_or_sections, dim=0):
|
|
r"""Splits the tensor into chunks.
|
|
|
|
If :attr:`split_size_or_sections` is an integer type, then :attr:`tensor` will
|
|
be split into equally sized chunks (if possible). Last chunk will be smaller if
|
|
the tensor size along the given dimension :attr:`dim` is not divisible by
|
|
:attr:`split_size`.
|
|
|
|
If :attr:`split_size_or_sections` is a list, then :attr:`tensor` will be split
|
|
into ``len(split_size_or_sections)`` chunks with sizes in :attr:`dim` according
|
|
to :attr:`split_size_or_sections`.
|
|
|
|
Arguments:
|
|
tensor (Tensor): tensor to split.
|
|
split_size_or_sections (int) or (list(int)): size of a single chunk or
|
|
list of sizes for each chunk
|
|
dim (int): dimension along which to split the tensor.
|
|
"""
|
|
# Overwriting reason:
|
|
# This dispatches to two ATen functions depending on the type of
|
|
# split_size_or_sections. The branching code is in tensor.py, which we
|
|
# call here.
|
|
return tensor.split(split_size_or_sections, dim)
|
|
|
|
|
|
def lu_unpack(LU_data, LU_pivots, unpack_data=True, unpack_pivots=True):
|
|
r"""Unpacks the data and pivots from a LU factorization of a tensor.
|
|
|
|
Returns a tuple of tensors as ``(the pivots, the L tensor, the U tensor)``.
|
|
|
|
Arguments:
|
|
LU_data (Tensor): the packed LU factorization data
|
|
LU_pivots (Tensor): the packed LU factorization pivots
|
|
unpack_data (bool): flag indicating if the data should be unpacked
|
|
unpack_pivots (bool): flag indicating if the pivots should be unpacked
|
|
|
|
Example::
|
|
|
|
>>> A = torch.randn(2, 3, 3)
|
|
>>> A_LU, pivots = A.lu()
|
|
>>> P, A_L, A_U = torch.lu_unpack(A_LU, pivots)
|
|
>>>
|
|
>>> # can recover A from factorization
|
|
>>> A_ = torch.bmm(P, torch.bmm(A_L, A_U))
|
|
"""
|
|
|
|
sz = LU_data.size(-1)
|
|
|
|
if unpack_data:
|
|
U = LU_data.triu()
|
|
L = LU_data.tril()
|
|
L.diagonal(dim1=-2, dim2=-1).fill_(1)
|
|
else:
|
|
L = U = None
|
|
|
|
if unpack_pivots:
|
|
LU_pivots_zero_idx = LU_pivots - 1
|
|
if LU_data.dim() > 2:
|
|
P = torch.eye(sz, device=LU_data.device, dtype=LU_data.dtype).expand_as(LU_data).clone()
|
|
for idx in product(*map(lambda x: list(range(x)), LU_data.shape[:-2])):
|
|
final_order = list(range(sz))
|
|
for k, j in enumerate(LU_pivots_zero_idx[idx]):
|
|
final_order[k], final_order[j] = final_order[j], final_order[k]
|
|
P[idx] = P[idx].index_select(1, torch.as_tensor(final_order, device=LU_pivots.device))
|
|
else:
|
|
P = torch.eye(sz, device=LU_data.device, dtype=LU_data.dtype)
|
|
final_order = list(range(sz))
|
|
for k, j, in enumerate(LU_pivots_zero_idx):
|
|
final_order[k], final_order[j] = final_order[j], final_order[k]
|
|
P = P.index_select(1, torch.as_tensor(final_order, device=LU_pivots.device))
|
|
else:
|
|
P = None
|
|
|
|
return P, L, U
|
|
|
|
|
|
def einsum(equation, *operands):
|
|
r"""einsum(equation, *operands) -> Tensor
|
|
|
|
This function provides a way of computing multilinear expressions (i.e. sums of products) using the
|
|
Einstein summation convention.
|
|
|
|
Args:
|
|
equation (string): The equation is given in terms of lower case letters (indices) to be associated
|
|
with each dimension of the operands and result. The left hand side lists the operands
|
|
dimensions, separated by commas. There should be one index letter per tensor dimension.
|
|
The right hand side follows after `->` and gives the indices for the output.
|
|
If the `->` and right hand side are omitted, it implicitly defined as the alphabetically
|
|
sorted list of all indices appearing exactly once in the left hand side.
|
|
The indices not apprearing in the output are summed over after multiplying the operands
|
|
entries.
|
|
If an index appears several times for the same operand, a diagonal is taken.
|
|
Ellipses `...` represent a fixed number of dimensions. If the right hand side is inferred,
|
|
the ellipsis dimensions are at the beginning of the output.
|
|
operands (list of Tensors): The operands to compute the Einstein sum of.
|
|
|
|
Examples::
|
|
|
|
>>> x = torch.randn(5)
|
|
>>> y = torch.randn(4)
|
|
>>> torch.einsum('i,j->ij', x, y) # outer product
|
|
tensor([[-0.0570, -0.0286, -0.0231, 0.0197],
|
|
[ 1.2616, 0.6335, 0.5113, -0.4351],
|
|
[ 1.4452, 0.7257, 0.5857, -0.4984],
|
|
[-0.4647, -0.2333, -0.1883, 0.1603],
|
|
[-1.1130, -0.5588, -0.4510, 0.3838]])
|
|
|
|
|
|
>>> A = torch.randn(3,5,4)
|
|
>>> l = torch.randn(2,5)
|
|
>>> r = torch.randn(2,4)
|
|
>>> torch.einsum('bn,anm,bm->ba', l, A, r) # compare torch.nn.functional.bilinear
|
|
tensor([[-0.3430, -5.2405, 0.4494],
|
|
[ 0.3311, 5.5201, -3.0356]])
|
|
|
|
|
|
>>> As = torch.randn(3,2,5)
|
|
>>> Bs = torch.randn(3,5,4)
|
|
>>> torch.einsum('bij,bjk->bik', As, Bs) # batch matrix multiplication
|
|
tensor([[[-1.0564, -1.5904, 3.2023, 3.1271],
|
|
[-1.6706, -0.8097, -0.8025, -2.1183]],
|
|
|
|
[[ 4.2239, 0.3107, -0.5756, -0.2354],
|
|
[-1.4558, -0.3460, 1.5087, -0.8530]],
|
|
|
|
[[ 2.8153, 1.8787, -4.3839, -1.2112],
|
|
[ 0.3728, -2.1131, 0.0921, 0.8305]]])
|
|
|
|
>>> A = torch.randn(3, 3)
|
|
>>> torch.einsum('ii->i', A) # diagonal
|
|
tensor([-0.7825, 0.8291, -0.1936])
|
|
|
|
>>> A = torch.randn(4, 3, 3)
|
|
>>> torch.einsum('...ii->...i', A) # batch diagonal
|
|
tensor([[-1.0864, 0.7292, 0.0569],
|
|
[-0.9725, -1.0270, 0.6493],
|
|
[ 0.5832, -1.1716, -1.5084],
|
|
[ 0.4041, -1.1690, 0.8570]])
|
|
|
|
>>> A = torch.randn(2, 3, 4, 5)
|
|
>>> torch.einsum('...ij->...ji', A).shape # batch permute
|
|
torch.Size([2, 3, 5, 4])
|
|
"""
|
|
if len(operands) == 1 and isinstance(operands[0], (list, tuple)):
|
|
# the old interface of passing the operands as one list argument
|
|
operands = operands[0]
|
|
return torch._C._VariableFunctions.einsum(equation, operands)
|
|
|
|
|
|
def isfinite(tensor):
|
|
r"""Returns a new tensor with boolean elements representing if each element is `Finite` or not.
|
|
|
|
Arguments:
|
|
tensor (Tensor): A tensor to check
|
|
|
|
Returns:
|
|
Tensor: ``A torch.Tensor with dtype torch.bool`` containing a True at each location of finite elements and False otherwise
|
|
|
|
Example::
|
|
|
|
>>> torch.isfinite(torch.tensor([1, float('inf'), 2, float('-inf'), float('nan')]))
|
|
tensor([True, False, True, False, False])
|
|
"""
|
|
if not isinstance(tensor, torch.Tensor):
|
|
raise TypeError("The argument is not a tensor: {}".format(repr(tensor)))
|
|
|
|
# Support int input, nan and inf are concepts in floating point numbers.
|
|
# Numpy uses type 'Object' when the int overflows long, but we don't
|
|
# have a similar concept. It's safe to assume any created LongTensor doesn't
|
|
# overflow and it's finite.
|
|
if not tensor.is_floating_point():
|
|
return torch.ones_like(tensor, dtype=torch.bool)
|
|
return (tensor == tensor) & (tensor.abs() != inf)
|
|
|
|
|
|
def isinf(tensor):
|
|
r"""Returns a new tensor with boolean elements representing if each element is `+/-INF` or not.
|
|
|
|
Arguments:
|
|
tensor (Tensor): A tensor to check
|
|
|
|
Returns:
|
|
Tensor: ``A torch.Tensor with dtype torch.bool`` containing a True at each location of `+/-INF` elements and False otherwise
|
|
|
|
Example::
|
|
|
|
>>> torch.isinf(torch.tensor([1, float('inf'), 2, float('-inf'), float('nan')]))
|
|
tensor([False, True, False, True, False])
|
|
"""
|
|
if not isinstance(tensor, torch.Tensor):
|
|
raise TypeError("The argument is not a tensor: {}".format(repr(tensor)))
|
|
if tensor.dtype in [torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64]:
|
|
return torch.zeros_like(tensor, dtype=torch.bool)
|
|
return tensor.abs() == inf
|
|
|
|
|
|
def meshgrid(*tensors, **kwargs):
|
|
r"""Take :math:`N` tensors, each of which can be either scalar or 1-dimensional
|
|
vector, and create :math:`N` N-dimensional grids, where the :math:`i` :sup:`th` grid is defined by
|
|
expanding the :math:`i` :sup:`th` input over dimensions defined by other inputs.
|
|
|
|
|
|
Args:
|
|
tensors (list of Tensor): list of scalars or 1 dimensional tensors. Scalars will be
|
|
treated as tensors of size :math:`(1,)` automatically
|
|
|
|
Returns:
|
|
seq (sequence of Tensors): If the input has :math:`k` tensors of size
|
|
:math:`(N_1,), (N_2,), \ldots , (N_k,)`, then the output would also have :math:`k` tensors,
|
|
where all tensors are of size :math:`(N_1, N_2, \ldots , N_k)`.
|
|
|
|
Example::
|
|
|
|
>>> x = torch.tensor([1, 2, 3])
|
|
>>> y = torch.tensor([4, 5, 6])
|
|
>>> grid_x, grid_y = torch.meshgrid(x, y)
|
|
>>> grid_x
|
|
tensor([[1, 1, 1],
|
|
[2, 2, 2],
|
|
[3, 3, 3]])
|
|
>>> grid_y
|
|
tensor([[4, 5, 6],
|
|
[4, 5, 6],
|
|
[4, 5, 6]])
|
|
"""
|
|
if kwargs:
|
|
raise TypeError("meshgrid() got an unexpected keyword argument '%s'" % (list(kwargs)[0],))
|
|
if len(tensors) == 1 and isinstance(tensors[0], (list, tuple)):
|
|
# the old interface of passing the operands as one list argument
|
|
tensors = tensors[0]
|
|
return torch._C._VariableFunctions.meshgrid(tensors)
|
|
|
|
|
|
def stft(input, n_fft, hop_length=None, win_length=None, window=None,
|
|
center=True, pad_mode='reflect', normalized=False, onesided=True):
|
|
# type: (Tensor, int, Optional[int], Optional[int], Optional[Tensor], bool, str, bool, bool) -> Tensor
|
|
r"""Short-time Fourier transform (STFT).
|
|
|
|
Ignoring the optional batch dimension, this method computes the following
|
|
expression:
|
|
|
|
.. math::
|
|
X[m, \omega] = \sum_{k = 0}^{\text{win\_length-1}}%
|
|
\text{window}[k]\ \text{input}[m \times \text{hop\_length} + k]\ %
|
|
\exp\left(- j \frac{2 \pi \cdot \omega k}{\text{win\_length}}\right),
|
|
|
|
where :math:`m` is the index of the sliding window, and :math:`\omega` is
|
|
the frequency that :math:`0 \leq \omega < \text{n\_fft}`. When
|
|
:attr:`onesided` is the default value ``True``,
|
|
|
|
* :attr:`input` must be either a 1-D time sequence or a 2-D batch of time
|
|
sequences.
|
|
|
|
* If :attr:`hop_length` is ``None`` (default), it is treated as equal to
|
|
``floor(n_fft / 4)``.
|
|
|
|
* If :attr:`win_length` is ``None`` (default), it is treated as equal to
|
|
:attr:`n_fft`.
|
|
|
|
* :attr:`window` can be a 1-D tensor of size :attr:`win_length`, e.g., from
|
|
:meth:`torch.hann_window`. If :attr:`window` is ``None`` (default), it is
|
|
treated as if having :math:`1` everywhere in the window. If
|
|
:math:`\text{win\_length} < \text{n\_fft}`, :attr:`window` will be padded on
|
|
both sides to length :attr:`n_fft` before being applied.
|
|
|
|
* If :attr:`center` is ``True`` (default), :attr:`input` will be padded on
|
|
both sides so that the :math:`t`-th frame is centered at time
|
|
:math:`t \times \text{hop\_length}`. Otherwise, the :math:`t`-th frame
|
|
begins at time :math:`t \times \text{hop\_length}`.
|
|
|
|
* :attr:`pad_mode` determines the padding method used on :attr:`input` when
|
|
:attr:`center` is ``True``. See :meth:`torch.nn.functional.pad` for
|
|
all available options. Default is ``"reflect"``.
|
|
|
|
* If :attr:`onesided` is ``True`` (default), only values for :math:`\omega`
|
|
in :math:`\left[0, 1, 2, \dots, \left\lfloor \frac{\text{n\_fft}}{2} \right\rfloor + 1\right]`
|
|
are returned because the real-to-complex Fourier transform satisfies the
|
|
conjugate symmetry, i.e., :math:`X[m, \omega] = X[m, \text{n\_fft} - \omega]^*`.
|
|
|
|
* If :attr:`normalized` is ``True`` (default is ``False``), the function
|
|
returns the normalized STFT results, i.e., multiplied by :math:`(\text{frame\_length})^{-0.5}`.
|
|
|
|
Returns the real and the imaginary parts together as one tensor of size
|
|
:math:`(* \times N \times T \times 2)`, where :math:`*` is the optional
|
|
batch size of :attr:`input`, :math:`N` is the number of frequencies where
|
|
STFT is applied, :math:`T` is the total number of frames used, and each pair
|
|
in the last dimension represents a complex number as the real part and the
|
|
imaginary part.
|
|
|
|
.. warning::
|
|
This function changed signature at version 0.4.1. Calling with the
|
|
previous signature may cause error or return incorrect result.
|
|
|
|
Arguments:
|
|
input (Tensor): the input tensor
|
|
n_fft (int): size of Fourier transform
|
|
hop_length (int, optional): the distance between neighboring sliding window
|
|
frames. Default: ``None`` (treated as equal to ``floor(n_fft / 4)``)
|
|
win_length (int, optional): the size of window frame and STFT filter.
|
|
Default: ``None`` (treated as equal to :attr:`n_fft`)
|
|
window (Tensor, optional): the optional window function.
|
|
Default: ``None`` (treated as window of all :math:`1` s)
|
|
center (bool, optional): whether to pad :attr:`input` on both sides so
|
|
that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`.
|
|
Default: ``True``
|
|
pad_mode (string, optional): controls the padding method used when
|
|
:attr:`center` is ``True``. Default: ``"reflect"``
|
|
normalized (bool, optional): controls whether to return the normalized STFT results
|
|
Default: ``False``
|
|
onesided (bool, optional): controls whether to return half of results to
|
|
avoid redundancy Default: ``True``
|
|
|
|
Returns:
|
|
Tensor: A tensor containing the STFT result with shape described above
|
|
|
|
"""
|
|
# TODO: after having proper ways to map Python strings to ATen Enum, move
|
|
# this and F.pad to ATen.
|
|
if center:
|
|
signal_dim = input.dim()
|
|
extended_shape = [1] * (3 - signal_dim) + list(input.size())
|
|
pad = int(n_fft // 2)
|
|
input = F.pad(input.view(extended_shape), (pad, pad), pad_mode)
|
|
input = input.view(input.shape[-signal_dim:])
|
|
return torch._C._VariableFunctions.stft(input, n_fft, hop_length, win_length, window, normalized, onesided)
|
|
|
|
|
|
del torch.unique_dim
|
|
|
|
|
|
def unique(input, sorted=True, return_inverse=False, return_counts=False, dim=None):
|
|
r"""Returns the unique elements of the input tensor.
|
|
|
|
Arguments:
|
|
input (Tensor): the input tensor
|
|
sorted (bool): Whether to sort the unique elements in ascending order
|
|
before returning as output.
|
|
return_inverse (bool): Whether to also return the indices for where
|
|
elements in the original input ended up in the returned unique list.
|
|
return_counts (bool): Whether to also return the counts for each unique
|
|
element.
|
|
dim (int): the dimension to apply unique. If ``None``, the unique of the
|
|
flattened input is returned. default: ``None``
|
|
|
|
Returns:
|
|
(Tensor, Tensor (optional), Tensor (optional)): A tensor or a tuple of tensors containing
|
|
|
|
- **output** (*Tensor*): the output list of unique scalar elements.
|
|
- **inverse_indices** (*Tensor*): (optional) if
|
|
:attr:`return_inverse` is True, there will be an additional
|
|
returned tensor (same shape as input) representing the indices
|
|
for where elements in the original input map to in the output;
|
|
otherwise, this function will only return a single tensor.
|
|
- **counts** (*Tensor*): (optional) if
|
|
:attr:`return_counts` is True, there will be an additional
|
|
returned tensor (same shape as output or output.size(dim),
|
|
if dim was specified) representing the number of occurrences
|
|
for each unique value or tensor.
|
|
|
|
Example::
|
|
|
|
>>> output = torch.unique(torch.tensor([1, 3, 2, 3], dtype=torch.long))
|
|
>>> output
|
|
tensor([ 2, 3, 1])
|
|
|
|
>>> output, inverse_indices = torch.unique(
|
|
torch.tensor([1, 3, 2, 3], dtype=torch.long), sorted=True, return_inverse=True)
|
|
>>> output
|
|
tensor([ 1, 2, 3])
|
|
>>> inverse_indices
|
|
tensor([ 0, 2, 1, 2])
|
|
|
|
>>> output, inverse_indices = torch.unique(
|
|
torch.tensor([[1, 3], [2, 3]], dtype=torch.long), sorted=True, return_inverse=True)
|
|
>>> output
|
|
tensor([ 1, 2, 3])
|
|
>>> inverse_indices
|
|
tensor([[ 0, 2],
|
|
[ 1, 2]])
|
|
|
|
"""
|
|
if dim is not None:
|
|
output, inverse_indices, counts = torch._C._VariableFunctions.unique_dim(
|
|
input,
|
|
dim,
|
|
sorted=sorted,
|
|
return_inverse=return_inverse,
|
|
return_counts=return_counts,
|
|
)
|
|
else:
|
|
output, inverse_indices, counts = torch._unique2(
|
|
input,
|
|
sorted=sorted,
|
|
return_inverse=return_inverse,
|
|
return_counts=return_counts,
|
|
)
|
|
if return_inverse and return_counts:
|
|
return output, inverse_indices, counts
|
|
elif return_inverse:
|
|
return output, inverse_indices
|
|
elif return_counts:
|
|
return output, counts
|
|
else:
|
|
return output
|
|
|
|
|
|
def unique_consecutive(input, return_inverse=False, return_counts=False, dim=None):
|
|
r"""Eliminates all but the first element from every consecutive group of equivalent elements.
|
|
|
|
.. note:: This function is different from :func:`torch.unique` in the sense that this function
|
|
only eliminates consecutive duplicate values. This semantics is similar to `std::unique`
|
|
in C++.
|
|
|
|
Arguments:
|
|
input (Tensor): the input tensor
|
|
return_inverse (bool): Whether to also return the indices for where
|
|
elements in the original input ended up in the returned unique list.
|
|
return_counts (bool): Whether to also return the counts for each unique
|
|
element.
|
|
dim (int): the dimension to apply unique. If ``None``, the unique of the
|
|
flattened input is returned. default: ``None``
|
|
|
|
Returns:
|
|
(Tensor, Tensor (optional), Tensor (optional)): A tensor or a tuple of tensors containing
|
|
|
|
- **output** (*Tensor*): the output list of unique scalar elements.
|
|
- **inverse_indices** (*Tensor*): (optional) if
|
|
:attr:`return_inverse` is True, there will be an additional
|
|
returned tensor (same shape as input) representing the indices
|
|
for where elements in the original input map to in the output;
|
|
otherwise, this function will only return a single tensor.
|
|
- **counts** (*Tensor*): (optional) if
|
|
:attr:`return_counts` is True, there will be an additional
|
|
returned tensor (same shape as output or output.size(dim),
|
|
if dim was specified) representing the number of occurrences
|
|
for each unique value or tensor.
|
|
|
|
Example::
|
|
|
|
>>> x = torch.tensor([1, 1, 2, 2, 3, 1, 1, 2])
|
|
>>> output = torch.unique_consecutive(x)
|
|
>>> output
|
|
tensor([1, 2, 3, 1, 2])
|
|
|
|
>>> output, inverse_indices = torch.unique_consecutive(x, return_inverse=True)
|
|
>>> output
|
|
tensor([1, 2, 3, 1, 2])
|
|
>>> inverse_indices
|
|
tensor([0, 0, 1, 1, 2, 3, 3, 4])
|
|
|
|
>>> output, counts = torch.unique_consecutive(x, return_counts=True)
|
|
>>> output
|
|
tensor([1, 2, 3, 1, 2])
|
|
>>> counts
|
|
tensor([2, 2, 1, 2, 1])
|
|
"""
|
|
output, inverse_indices, counts = torch._C._VariableFunctions.unique_consecutive(
|
|
input, return_inverse=return_inverse, return_counts=return_counts, dim=dim)
|
|
if return_inverse and return_counts:
|
|
return output, inverse_indices, counts
|
|
if return_inverse:
|
|
return output, inverse_indices
|
|
if return_counts:
|
|
return output, counts
|
|
return output
|
|
|
|
|
|
def tensordot(a, b, dims=2):
|
|
r"""Returns a contraction of a and b over multiple dimensions.
|
|
|
|
:attr:`tensordot` implements a generalized matrix product.
|
|
|
|
Args:
|
|
a (Tensor): Left tensor to contract
|
|
b (Tensor): Right tensor to contract
|
|
dims (int or tuple of two lists of integers): number of dimensions to
|
|
contract or explicit lists of dimensions for :attr:`a` and
|
|
:attr:`b` respectively
|
|
|
|
When called with an integer argument :attr:`dims` = :math:`d`, and the number of
|
|
dimensions of :attr:`a` and :attr:`b` is :math:`m` and :math:`n`, respectively,
|
|
it computes
|
|
|
|
.. math::
|
|
r_{i_0,...,i_{m-d}, i_d,...,i_n}
|
|
= \sum_{k_0,...,k_{d-1}} a_{i_0,...,i_{m-d},k_0,...,k_{d-1}} \times b_{k_0,...,k_{d-1}, i_d,...,i_n}.
|
|
|
|
When called with :attr:`dims` of the list form, the given dimensions will be contracted
|
|
in place of the last :math:`d` of :attr:`a` and the first :math:`d` of :math:`b`. The sizes
|
|
in these dimensions must match, but :attr:`tensordot` will deal with broadcasted
|
|
dimensions.
|
|
|
|
Examples::
|
|
|
|
>>> a = torch.arange(60.).reshape(3, 4, 5)
|
|
>>> b = torch.arange(24.).reshape(4, 3, 2)
|
|
>>> torch.tensordot(a, b, dims=([1, 0], [0, 1]))
|
|
tensor([[4400., 4730.],
|
|
[4532., 4874.],
|
|
[4664., 5018.],
|
|
[4796., 5162.],
|
|
[4928., 5306.]])
|
|
|
|
>>> a = torch.randn(3, 4, 5, device='cuda')
|
|
>>> b = torch.randn(4, 5, 6, device='cuda')
|
|
>>> c = torch.tensordot(a, b, dims=2).cpu()
|
|
tensor([[ 8.3504, -2.5436, 6.2922, 2.7556, -1.0732, 3.2741],
|
|
[ 3.3161, 0.0704, 5.0187, -0.4079, -4.3126, 4.8744],
|
|
[ 0.8223, 3.9445, 3.2168, -0.2400, 3.4117, 1.7780]])
|
|
|
|
"""
|
|
if isinstance(dims, (list, tuple)) or \
|
|
(isinstance(dims, torch.Tensor) and dims.numel() > 1):
|
|
dims_a, dims_b = dims
|
|
else:
|
|
if isinstance(dims, torch.Tensor):
|
|
dims = dims.item()
|
|
dims_a = list(range(-dims, 0))
|
|
dims_b = list(range(dims))
|
|
return torch._C._VariableFunctions.tensordot(a, b, dims_a, dims_b)
|
|
|
|
|
|
def cartesian_prod(*tensors):
|
|
"""Do cartesian product of the given sequence of tensors. The behavior is similar to
|
|
python's `itertools.product`.
|
|
|
|
Arguments:
|
|
*tensors: any number of 1 dimensional tensors.
|
|
|
|
Returns:
|
|
Tensor: A tensor equivalent to converting all the input tensors into lists,
|
|
do `itertools.product` on these lists, and finally convert the resulting list
|
|
into tensor.
|
|
|
|
Example::
|
|
|
|
>>> a = [1, 2, 3]
|
|
>>> b = [4, 5]
|
|
>>> list(itertools.product(a, b))
|
|
[(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)]
|
|
>>> tensor_a = torch.tensor(a)
|
|
>>> tensor_b = torch.tensor(b)
|
|
>>> torch.cartesian_prod(tensor_a, tensor_b)
|
|
tensor([[1, 4],
|
|
[1, 5],
|
|
[2, 4],
|
|
[2, 5],
|
|
[3, 4],
|
|
[3, 5]])
|
|
"""
|
|
return torch._C._VariableFunctions.cartesian_prod(tensors)
|
|
|
|
|
|
def norm(input, p="fro", dim=None, keepdim=False, out=None, dtype=None):
|
|
r"""Returns the matrix norm or vector norm of a given tensor.
|
|
|
|
Args:
|
|
input (Tensor): the input tensor
|
|
p (int, float, inf, -inf, 'fro', 'nuc', optional): the order of norm. Default: ``'fro'``
|
|
The following norms can be calculated:
|
|
|
|
===== ============================ ==========================
|
|
ord matrix norm vector norm
|
|
===== ============================ ==========================
|
|
None Frobenius norm 2-norm
|
|
'fro' Frobenius norm --
|
|
'nuc' nuclear norm --
|
|
Other as vec norm when dim is None sum(abs(x)**ord)**(1./ord)
|
|
===== ============================ ==========================
|
|
|
|
dim (int, 2-tuple of ints, 2-list of ints, optional): If it is an int,
|
|
vector norm will be calculated, if it is 2-tuple of ints, matrix norm
|
|
will be calculated. If the value is None, matrix norm will be calculated
|
|
when the input tensor only has two dimensions, vector norm will be
|
|
calculated when the input tensor only has one dimension. If the input
|
|
tensor has more than two dimensions, the vector norm will be applied to
|
|
last dimension.
|
|
keepdim (bool, optional): whether the output tensors have :attr:`dim`
|
|
retained or not. Ignored if :attr:`dim` = ``None`` and
|
|
:attr:`out` = ``None``. Default: ``False``
|
|
out (Tensor, optional): the output tensor. Ignored if
|
|
:attr:`dim` = ``None`` and :attr:`out` = ``None``.
|
|
dtype (:class:`torch.dtype`, optional): the desired data type of
|
|
returned tensor. If specified, the input tensor is casted to
|
|
:attr:'dtype' while performing the operation. Default: None.
|
|
|
|
|
|
Example::
|
|
|
|
>>> import torch
|
|
>>> a = torch.arange(9, dtype= torch.float) - 4
|
|
>>> b = a.reshape((3, 3))
|
|
>>> torch.norm(a)
|
|
tensor(7.7460)
|
|
>>> torch.norm(b)
|
|
tensor(7.7460)
|
|
>>> torch.norm(a, float('inf'))
|
|
tensor(4.)
|
|
>>> torch.norm(b, float('inf'))
|
|
tensor(4.)
|
|
>>> c = torch.tensor([[ 1, 2, 3],[-1, 1, 4]] , dtype= torch.float)
|
|
>>> torch.norm(c, dim=0)
|
|
tensor([1.4142, 2.2361, 5.0000])
|
|
>>> torch.norm(c, dim=1)
|
|
tensor([3.7417, 4.2426])
|
|
>>> torch.norm(c, p=1, dim=1)
|
|
tensor([6., 6.])
|
|
>>> d = torch.arange(8, dtype= torch.float).reshape(2,2,2)
|
|
>>> torch.norm(d, dim=(1,2))
|
|
tensor([ 3.7417, 11.2250])
|
|
>>> torch.norm(d[0, :, :]), torch.norm(d[1, :, :])
|
|
(tensor(3.7417), tensor(11.2250))
|
|
"""
|
|
ndim = input.dim()
|
|
|
|
# catch default case
|
|
if dim is None and out is None and dtype is None:
|
|
if p == "fro":
|
|
return torch._C._VariableFunctions.frobenius_norm(input)
|
|
elif p != "nuc":
|
|
return torch._C._VariableFunctions.norm(input, p)
|
|
|
|
if p == "fro":
|
|
if dtype is not None:
|
|
raise ValueError("dtype argument is not supported in frobenius norm")
|
|
if dim is None:
|
|
dim = tuple(range(ndim))
|
|
if out is None:
|
|
return torch._C._VariableFunctions.frobenius_norm(input, dim, keepdim=keepdim)
|
|
return torch._C._VariableFunctions.frobenius_norm(input, dim, keepdim=keepdim, out=out)
|
|
elif p == "nuc":
|
|
if dtype is not None:
|
|
raise ValueError("dtype argument is not supported in nuclear norm")
|
|
if dim is None:
|
|
if out is None:
|
|
return torch._C._VariableFunctions.nuclear_norm(input, keepdim=keepdim)
|
|
return torch._C._VariableFunctions.nuclear_norm(input, keepdim=keepdim, out=out)
|
|
return torch._C._VariableFunctions.nuclear_norm(input, dim, keepdim=keepdim, out=out)
|
|
else:
|
|
if dim is None:
|
|
dim = tuple(range(ndim))
|
|
if out is None and dtype is None:
|
|
return torch._C._VariableFunctions.norm(input, p, dim, keepdim=keepdim)
|
|
elif out is None:
|
|
return torch._C._VariableFunctions.norm(input, p, dim, keepdim=keepdim, dtype=dtype)
|
|
elif dtype is None:
|
|
return torch._C._VariableFunctions.norm(input, p, dim, keepdim=keepdim, out=out)
|
|
return torch._C._VariableFunctions.norm(input, p, dim, keepdim=keepdim, dtype=dtype, out=out)
|
|
|
|
|
|
def chain_matmul(*matrices):
|
|
r"""Returns the matrix product of the :math:`N` 2-D tensors. This product is efficiently computed
|
|
using the matrix chain order algorithm which selects the order in which incurs the lowest cost in terms
|
|
of arithmetic operations (`[CLRS]`_). Note that since this is a function to compute the product, :math:`N`
|
|
needs to be greater than or equal to 2; if equal to 2 then a trivial matrix-matrix product is returned.
|
|
If :math:`N` is 1, then this is a no-op - the original matrix is returned as is.
|
|
|
|
|
|
Args:
|
|
matrices (Tensors...): a sequence of 2 or more 2-D tensors whose product is to be determined.
|
|
|
|
|
|
Returns:
|
|
Tensor: if the :math:`i^{th}` tensor was of dimensions :math:`p_{i} \times p_{i + 1}`, then the product
|
|
would be of dimensions :math:`p_{1} \times p_{N + 1}`.
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(3, 4)
|
|
>>> b = torch.randn(4, 5)
|
|
>>> c = torch.randn(5, 6)
|
|
>>> d = torch.randn(6, 7)
|
|
>>> torch.chain_matmul(a, b, c, d)
|
|
tensor([[ -2.3375, -3.9790, -4.1119, -6.6577, 9.5609, -11.5095, -3.2614],
|
|
[ 21.4038, 3.3378, -8.4982, -5.2457, -10.2561, -2.4684, 2.7163],
|
|
[ -0.9647, -5.8917, -2.3213, -5.2284, 12.8615, -12.2816, -2.5095]])
|
|
|
|
.. _`[CLRS]`: https://mitpress.mit.edu/books/introduction-algorithms-third-edition
|
|
"""
|
|
return torch._C._VariableFunctions.chain_matmul(matrices)
|
|
|
|
|
|
def lu(A, pivot=True, get_infos=False, out=None):
|
|
r"""Computes the LU factorization of a square matrix or batches of square matrices
|
|
:attr:`A`. Returns a tuple containing the LU factorization and pivots of :attr:`A`.
|
|
Pivoting is done if :attr:`pivot` is set to ``True``.
|
|
|
|
.. note::
|
|
The pivots returned by the function are 1-indexed. If :attr:`pivot` is ``False``,
|
|
then the returned pivots is a tensor filled with zeros of the appropriate size.
|
|
|
|
.. note::
|
|
LU factorization with :attr:`pivot` = ``False`` is not available for CPU, and attempting
|
|
to do so will throw an error. However, LU factorization with :attr:`pivot` = ``False`` is
|
|
available for CUDA.
|
|
|
|
.. note::
|
|
This function does not check if the factorization was successful or not if
|
|
:attr:`get_infos` is ``True`` since the status of the factorization is present in the
|
|
third element of the return tuple.
|
|
|
|
Arguments:
|
|
A (Tensor): the tensor to factor of size :math:`(*, m, m)`
|
|
pivot (bool, optional): controls whether pivoting is done. Default: ``True``
|
|
get_infos (bool, optional): if set to ``True``, returns an info IntTensor.
|
|
Default: ``False``
|
|
out (tuple, optional): optional output tuple. If :attr:`get_infos` is ``True``,
|
|
then the elements in the tuple are Tensor, IntTensor,
|
|
and IntTensor. If :attr:`get_infos` is ``False``, then the
|
|
elements in the tuple are Tensor, IntTensor. Default: ``None``
|
|
|
|
Returns:
|
|
(Tensor, IntTensor, IntTensor (optional)): A tuple of tensors containing
|
|
|
|
- **factorization** (*Tensor*): the factorization of size :math:`(*, m, m)`
|
|
|
|
- **pivots** (*IntTensor*): the pivots of size :math:`(*, m)`
|
|
|
|
- **infos** (*IntTensor*, *optional*): if :attr:`get_infos` is ``True``, this is a tensor of
|
|
size :math:`(*)` where non-zero values indicate whether factorization for the matrix or
|
|
each minibatch has succeeded or failed
|
|
|
|
Example::
|
|
|
|
>>> A = torch.randn(2, 3, 3)
|
|
>>> A_LU, pivots = torch.lu(A)
|
|
>>> A_LU
|
|
tensor([[[ 1.3506, 2.5558, -0.0816],
|
|
[ 0.1684, 1.1551, 0.1940],
|
|
[ 0.1193, 0.6189, -0.5497]],
|
|
|
|
[[ 0.4526, 1.2526, -0.3285],
|
|
[-0.7988, 0.7175, -0.9701],
|
|
[ 0.2634, -0.9255, -0.3459]]])
|
|
>>> pivots
|
|
tensor([[ 3, 3, 3],
|
|
[ 3, 3, 3]], dtype=torch.int32)
|
|
>>> A_LU, pivots, info = torch.lu(A, get_infos=True)
|
|
>>> if info.nonzero().size(0) == 0:
|
|
... print('LU factorization succeeded for all samples!')
|
|
LU factorization succeeded for all samples!
|
|
"""
|
|
# If get_infos is True, then we don't need to check for errors and vice versa
|
|
result = torch._lu_with_info(A, pivot=pivot, check_errors=(not get_infos))
|
|
if out is not None:
|
|
if not isinstance(out, (tuple, list)):
|
|
raise TypeError("argument 'out' must be tuple of Tensors, not {}"
|
|
.format(type(out).__name__))
|
|
if len(out) - int(get_infos) != 2:
|
|
raise TypeError("expected tuple of {} elements but got {}"
|
|
.format(2 + int(get_infos), len(out)))
|
|
return (out[i].resize_as_(result[i]).copy_(result[i]) for i in range(len(out)))
|
|
if get_infos:
|
|
return result # A_LU, pivots, infos
|
|
else:
|
|
return result[0], result[1] # A_LU, pivots
|
|
|
|
|
|
def gels(input, A, out=None):
|
|
r"""Computes the solution to the least squares and least norm problems for a full
|
|
rank matrix :math:`A` of size :math:`(m \times n)` and a matrix :math:`B` of
|
|
size :math:`(m \times k)`.
|
|
|
|
For more information regarding :func:`torch.gels`, please check :func:`torch.lstsq`.
|
|
|
|
.. warning::
|
|
:func:`torch.gels` is deprecated in favour of :func:`torch.lstsq` and will be removed in the
|
|
next release. Please use :func:`torch.lstsq` instead.
|
|
"""
|
|
warnings.warn("torch.gels is deprecated in favour of torch.lstsq and will be removed in "
|
|
"the next release. Please use torch.lstsq instead.", stacklevel=2)
|
|
return torch.lstsq(input, A, out=out)
|
|
|
|
|
|
def align_tensors(*tensors):
|
|
if not torch._C._BUILD_NAMEDTENSOR:
|
|
raise RuntimeError('NYI: torch.align_tensors is experimental and a part '
|
|
'of our named tensors project.')
|
|
return torch._C._VariableFunctions.align_tensors(tensors)
|