pytorch/torch/csrc/utils/tuple_parser.cpp
Edward Yang 517c7c9861 Canonicalize all includes in PyTorch. (#14849)
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.

I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.

I used the following script to do the canonicalization:

```
  import subprocess
  import re
  import os.path

  files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
  for fn in files:
      if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
          continue
      if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
          continue
      with open(fn, 'r') as f:
          c = f.read()
      def fmt(p):
          return "#include <{}>".format(p)
      def repl(m):
          p = m.group(1)
          if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
              return fmt(p)
          if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
              return fmt(p)
          for root in ["aten/src", "torch/lib", ""]:
              for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
                  new_p = os.path.relpath(os.path.join(bad_root, p), root)
                  if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
                      return fmt(new_p)
          print("ERROR: ", fn, p)
          return m.group(0)
      new_c = re.sub(r'#include "([^"]+)"', repl, c)
      if new_c != c:
          print(fn)
          with open(fn, 'w') as f:
              f.write(new_c)
```

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849

Reviewed By: dzhulgakov

Differential Revision: D13363445

Pulled By: ezyang

fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
2018-12-08 19:38:30 -08:00

108 lines
2.9 KiB
C++

#include <torch/csrc/utils/tuple_parser.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/utils/python_strings.h>
#include <torch/csrc/utils/python_numbers.h>
#include <string>
#include <stdexcept>
#include <vector>
namespace torch {
TupleParser::TupleParser(PyObject* args, int num_args) : args(args), idx(0) {
int size = (int) PyTuple_GET_SIZE(args);
if (num_args >= 0 && size != num_args) {
std::string msg("missing required arguments (expected ");
msg += std::to_string(num_args) + " got " + std::to_string(size) + ")";
throw std::runtime_error(msg);
}
}
auto TupleParser::parse(bool& x, const std::string& param_name) -> void {
PyObject* obj = next_arg();
if (!PyBool_Check(obj)) {
throw invalid_type("bool", param_name);
}
x = (obj == Py_True);
}
auto TupleParser::parse(int& x, const std::string& param_name) -> void {
PyObject* obj = next_arg();
if (!THPUtils_checkLong(obj)) {
throw invalid_type("int", param_name);
}
x = THPUtils_unpackLong(obj);
}
auto TupleParser::parse(double& x, const std::string& param_name) -> void {
PyObject* obj = next_arg();
if (!THPUtils_checkDouble(obj)) {
throw invalid_type("float", param_name);
}
x = THPUtils_unpackDouble(obj);
}
auto TupleParser::parse(std::vector<int>& x, const std::string& param_name) -> void {
PyObject* obj = next_arg();
if (!PyTuple_Check(obj)) {
throw invalid_type("tuple of int", param_name);
}
int size = PyTuple_GET_SIZE(obj);
x.resize(size);
for (int i = 0; i < size; ++i) {
PyObject* item = PyTuple_GET_ITEM(obj, i);
if (!THPUtils_checkLong(item)) {
throw invalid_type("tuple of int", param_name);
}
x[i] = THPUtils_unpackLong(item);
}
}
auto TupleParser::parse(std::string& x, const std::string& param_name) -> void {
PyObject* obj = next_arg();
if (!THPUtils_checkString(obj)) {
throw invalid_type("bytes/str", param_name);
}
x = THPUtils_unpackString(obj);
}
auto TupleParser::next_arg() -> PyObject* {
if (idx >= PyTuple_GET_SIZE(args)) {
throw std::runtime_error("out of range");
}
return PyTuple_GET_ITEM(args, idx++);
}
auto TupleParser::invalid_type(const std::string& expected, const std::string& param_name) -> std::runtime_error {
std::string msg("argument ");
msg += std::to_string(idx - 1);
msg += " (";
msg += param_name;
msg += ") ";
msg += "must be ";
msg += expected;
PyObject* obj = PyTuple_GET_ITEM(args, idx -1);
if (PyTuple_Check(obj)){
msg += " but got tuple of (";
int size = PyTuple_GET_SIZE(obj);
for (int i = 0; i < size; ++i) {
msg += Py_TYPE(PyTuple_GET_ITEM(obj, i))->tp_name;
if (i != size - 1){
msg += ", ";
}
}
msg += ")";
}
else{
msg += ", not ";
msg += Py_TYPE(PyTuple_GET_ITEM(args, idx - 1))->tp_name;
}
return std::runtime_error(msg);
}
} // namespace torch