mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/18037 The FunctionSchema can now store an overload name and the parser knows how to parse it. Specify like this: my_func.overload1(arg1: Tensor) -> Tensor my_func.overload2(arg1: Tensor, arg2: Tensor) -> Tensor Reviewed By: zdevito Differential Revision: D14467497 fbshipit-source-id: 8832b32f07351bb61090357b17b77a6a2fed3650
677 lines
21 KiB
C++
677 lines
21 KiB
C++
#pragma once
|
|
#include <torch/csrc/autograd/variable.h>
|
|
#include <torch/csrc/autograd/generated/variable_factories.h>
|
|
#include <torch/csrc/jit/argument_spec.h>
|
|
#include <c10/util/Exception.h>
|
|
#include <torch/csrc/jit/graph_executor.h>
|
|
#include <torch/csrc/jit/ir.h>
|
|
#include <torch/csrc/jit/named_value.h>
|
|
#include <torch/csrc/jit/passes/shape_analysis.h>
|
|
#include <torch/csrc/jit/source_range.h>
|
|
|
|
#include <torch/csrc/WindowsTorchApiMacro.h>
|
|
#include <torch/csrc/api/include/torch/ordered_dict.h>
|
|
#include <torch/csrc/utils/memory.h>
|
|
|
|
#include <ATen/core/function_schema.h>
|
|
#include <c10/util/ArrayRef.h>
|
|
#include <c10/util/Optional.h>
|
|
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <mutex>
|
|
#include <ostream>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
|
|
// This file contains classes which assist in desugaring Python style
|
|
// modules and their methods into flattened graphs which don't have any
|
|
// function calls.
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
namespace script {
|
|
|
|
using ::c10::Argument;
|
|
using ::c10::FunctionSchema;
|
|
// Map which stores filename to content.
|
|
using ExtraFilesMap = std::unordered_map<std::string, std::string>;
|
|
|
|
// A method in a module, e.g. f in:
|
|
//
|
|
// class M(ScriptModule):
|
|
// @script_method
|
|
// def f(self, x):
|
|
// ...
|
|
// Note: because Method/Module are exposed to python these
|
|
// classes use python method naming conventions
|
|
|
|
struct Module;
|
|
|
|
using ModuleLookup = std::function<std::shared_ptr<Module>(
|
|
const std::vector<std::string>&)>;
|
|
|
|
struct Method {
|
|
Method(
|
|
Module* owner,
|
|
std::string name,
|
|
bool optimize,
|
|
std::shared_ptr<Graph> graph,
|
|
std::vector<IValue*> initial_members,
|
|
std::function<void(Method&)> method_creator)
|
|
: owner_(owner),
|
|
name_(std::move(name)),
|
|
graph_(std::move(graph)),
|
|
optimize(optimize),
|
|
initial_ivalues_(std::move(initial_members)),
|
|
method_creator(std::move(method_creator)) {
|
|
AT_ASSERT(graph_->inputs().size() >= initial_ivalues_.size());
|
|
int i = graph_->inputs().size() - initial_ivalues_.size();
|
|
for (auto member : initial_ivalues_) {
|
|
initial_ivalue_index[member] = i++;
|
|
}
|
|
}
|
|
|
|
void run(Stack& stack) {
|
|
for (auto input : initial_ivalues_) {
|
|
push(stack, *input);
|
|
}
|
|
get_executor().run(stack);
|
|
}
|
|
|
|
void run(Stack&& stack) {
|
|
run(stack);
|
|
}
|
|
|
|
IValue operator()(std::vector<IValue> stack) {
|
|
checkInputsAgainstSchema(stack);
|
|
run(stack);
|
|
return stack.front();
|
|
}
|
|
|
|
std::shared_ptr<Graph> graph_for(Stack inputs) {
|
|
for (auto tp : initial_ivalues_) {
|
|
inputs.emplace_back(*tp);
|
|
}
|
|
return get_executor().graphFor(inputs);
|
|
}
|
|
TORCH_API std::shared_ptr<Graph> graph() const {
|
|
return graph_;
|
|
}
|
|
|
|
TORCH_API const std::string& name() const {
|
|
return name_;
|
|
}
|
|
// emit a function call by inlining the callees Graph into this one
|
|
// adding any extra parameters necessary to do this call
|
|
|
|
// defined here to keep details of member_input handling confined to this
|
|
// class
|
|
Value* emit_call_to(
|
|
const SourceRange& loc,
|
|
Method& callee,
|
|
ArrayRef<NamedValue> args,
|
|
ArrayRef<NamedValue> kwargs);
|
|
|
|
// if this isn't yet defined, run its method_creator function
|
|
TORCH_API void ensure_defined();
|
|
|
|
size_t num_inputs() const {
|
|
return graph()->inputs().size() - initial_ivalues_.size();
|
|
}
|
|
TORCH_API Value* get_or_add_parameter(IValue* slot) {
|
|
AT_ASSERT(slot->isTensor());
|
|
return get_or_add_attribute(TensorType::get(), slot);
|
|
}
|
|
|
|
TORCH_API Value* get_or_add_attribute(TypePtr type, IValue* slot) {
|
|
auto it = initial_ivalue_index.find(slot);
|
|
if (it != initial_ivalue_index.end()) {
|
|
return graph()->inputs().at(it->second);
|
|
}
|
|
initial_ivalues_.push_back(slot);
|
|
initial_ivalue_index[slot] = graph()->inputs().size();
|
|
return graph()->addInput()->setType(type);
|
|
}
|
|
|
|
std::shared_ptr<Graph> propagate_shapes(
|
|
std::vector<at::Tensor> inputs,
|
|
bool with_grad = false) {
|
|
auto retval = graph_->copy();
|
|
Stack stack;
|
|
stack.reserve(inputs.size() + initial_ivalues_.size());
|
|
for (at::Tensor& i : inputs) {
|
|
stack.emplace_back(std::move(i));
|
|
}
|
|
for (IValue* inp : initial_ivalues_) {
|
|
stack.push_back(*inp);
|
|
}
|
|
const auto size = stack.size();
|
|
setInputTypes(*retval, ArgumentSpec(with_grad, stack, size));
|
|
PropagateInputShapes(retval);
|
|
return retval;
|
|
}
|
|
|
|
std::shared_ptr<Graph> propagate_and_assign_input_and_output_shapes(
|
|
std::vector<at::Tensor> inputs,
|
|
std::vector<at::Tensor> outputs,
|
|
bool with_grad = false,
|
|
bool propagate = true) {
|
|
auto retval = graph_->copy();
|
|
for (auto inp : initial_ivalues_) {
|
|
if (inp->isTensor()) {
|
|
inputs.push_back(inp->toTensor());
|
|
}
|
|
}
|
|
if (propagate) {
|
|
setInputTypes(
|
|
*retval,
|
|
ArgumentSpec(with_grad, fmap<IValue>(inputs), inputs.size()));
|
|
PropagateInputShapes(retval);
|
|
}
|
|
AT_ASSERT(retval->inputs().size() == inputs.size());
|
|
for (size_t i = 0; i < retval->inputs().size(); ++i) {
|
|
auto scalar_type = inputs[i].scalar_type();
|
|
auto sizes = inputs[i].sizes();
|
|
auto type =
|
|
torch::jit::CompleteTensorType::create(scalar_type, at::kCPU, sizes);
|
|
retval->inputs()[i]->setType(type);
|
|
}
|
|
at::ArrayRef<Value*> output_values = retval->outputs();
|
|
// patch this to still work if we are returning a tuple of multiple values
|
|
if (output_values.at(0)->type()->kind() == TupleType::Kind) {
|
|
AT_ASSERT(output_values.at(0)->node()->kind() == prim::TupleConstruct);
|
|
output_values = output_values.at(0)->node()->inputs();
|
|
}
|
|
AT_ASSERT(output_values.size() == outputs.size());
|
|
for (size_t i = 0; i < retval->outputs().size(); ++i) {
|
|
auto scalar_type = outputs[i].scalar_type();
|
|
auto sizes = outputs[i].sizes();
|
|
auto type =
|
|
torch::jit::CompleteTensorType::create(scalar_type, at::kCPU, sizes);
|
|
output_values[i]->setType(type);
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
const std::vector<IValue*>& initial_ivalues() const {
|
|
return initial_ivalues_;
|
|
}
|
|
|
|
Method& setSchema(FunctionSchema schema_) {
|
|
schema = make_unique<FunctionSchema>(std::move(schema_));
|
|
return *this;
|
|
}
|
|
|
|
TORCH_API const FunctionSchema& getSchema() const {
|
|
if (schema == nullptr) {
|
|
schema = make_unique<FunctionSchema>(defaultSchemaFor(*this));
|
|
}
|
|
return *schema;
|
|
}
|
|
|
|
std::string pretty_print_schema() const {
|
|
AT_ASSERT(schema);
|
|
std::stringstream ss;
|
|
ss << *schema;
|
|
return ss.str();
|
|
}
|
|
|
|
GraphExecutorState getDebugState() {
|
|
return get_executor().getDebugState();
|
|
}
|
|
|
|
void debugDisableAutodiffSubgraphInlining() {
|
|
return get_executor().debugDisableAutodiffSubgraphInlining();
|
|
}
|
|
|
|
bool is_optimized() const {
|
|
return optimize;
|
|
}
|
|
|
|
// the module that contains this method.
|
|
Module& owner() const {
|
|
return *owner_;
|
|
}
|
|
|
|
void check_single_output() {
|
|
AT_CHECK(
|
|
graph()->outputs().size() == 1,
|
|
"Method (but not graphs in general) require a single output. Use None/Tuple for 0 or 2+ outputs");
|
|
}
|
|
|
|
private:
|
|
static FunctionSchema defaultSchemaFor(const Method& method) {
|
|
std::vector<Argument> args;
|
|
std::vector<Argument> returns;
|
|
Graph& g = *method.graph();
|
|
size_t num_inputs = method.num_inputs();
|
|
for (size_t i = 0; i < num_inputs; ++i) {
|
|
const Value* v = g.inputs().at(i);
|
|
std::string name = v->hasUniqueName() ? v->uniqueNameBase()
|
|
: ("argument_" + std::to_string(i));
|
|
args.emplace_back(std::move(name), unshapedType(g.inputs()[i]->type()));
|
|
}
|
|
for (size_t i = 0; i < g.outputs().size(); ++i) {
|
|
returns.emplace_back("", unshapedType(g.outputs()[i]->type()));
|
|
}
|
|
return {method.name(), "", std::move(args), std::move(returns)};
|
|
}
|
|
|
|
GraphExecutor& get_executor() {
|
|
std::call_once(executor_init, [&] {
|
|
check_single_output();
|
|
executor = GraphExecutor(graph(), optimize);
|
|
});
|
|
return executor;
|
|
}
|
|
|
|
void checkInputsAgainstSchema(std::vector<IValue>& inputs) {
|
|
const auto& schema = getSchema();
|
|
// Do we have more inputs than the schema accepts?
|
|
AT_CHECK(
|
|
inputs.size() <= schema.arguments().size(),
|
|
"Expected at most ",
|
|
schema.arguments().size(),
|
|
" argument(s) for operator '",
|
|
schema.name(),
|
|
"', but received ",
|
|
inputs.size(),
|
|
" argument(s). Declaration: ",
|
|
schema);
|
|
|
|
for (size_t pos = 0; pos < schema.arguments().size(); ++pos) {
|
|
const auto& argument = schema.arguments()[pos];
|
|
if (pos < inputs.size()) {
|
|
if (!isSubvalueOf(inputs[pos], argument.type())) {
|
|
AT_ERROR(
|
|
"Expected value of type ",
|
|
*argument.type(),
|
|
" for argument '",
|
|
argument.name(),
|
|
"' in position ",
|
|
pos,
|
|
", but instead got value of type ",
|
|
attemptToRecoverType(inputs[pos])->str(),
|
|
". Declaration: ",
|
|
schema);
|
|
}
|
|
} else if (argument.default_value()) {
|
|
inputs.push_back(*argument.default_value());
|
|
} else {
|
|
AT_ERROR(
|
|
schema.name(),
|
|
"() is missing value for argument '",
|
|
argument.name(),
|
|
"'. Declaration: ",
|
|
schema);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Methods are uniqued onwed by a single module. This raw pointer allows
|
|
// looking up the module.
|
|
Module* owner_;
|
|
|
|
std::string name_;
|
|
std::shared_ptr<Graph> graph_; // for debugging and for inlining
|
|
bool optimize;
|
|
|
|
GraphExecutor executor; // for execution
|
|
// initial_ivalues are a list of additional arguments appended to graph
|
|
// that are inputs that come from the members of the Module or its submodules.
|
|
// each is a pointer to a slot in the module that owns this parameter
|
|
// parameters and submodules can only be _added_ to script Modules to ensure
|
|
// these pointers always stay valid
|
|
std::vector<IValue*> initial_ivalues_;
|
|
|
|
// map from a IValue* in initial_ivalues to the offset it appears at
|
|
// in graph. used to accelerate get_or_add_parameter
|
|
std::unordered_map<IValue*, size_t> initial_ivalue_index;
|
|
|
|
// TODO: support that case where we allow _writes_ to parameters from
|
|
// compiled functions.
|
|
// This requires more sophisticated tracking of ssa values in Graphs so that
|
|
// stores to all modules can be lifted to the end of a graph execution.
|
|
// It also adds more complexity to adding actual module invocations
|
|
// to the executor, so currently it is not done.
|
|
// std::vector<at::Tensor*> member_outputs;
|
|
|
|
std::once_flag executor_init;
|
|
|
|
// an optional function that actually creates the method when
|
|
// emit_call_to(this,...) is first called. this is used by the compiler so
|
|
// that it can construct methods out of order
|
|
std::function<void(Method&)> method_creator;
|
|
|
|
// if absent, then we generate a default schema based on the graph
|
|
// mutable because getSchema caches the default schema if one is requested
|
|
// before a call to setSchema
|
|
mutable std::unique_ptr<FunctionSchema> schema;
|
|
};
|
|
|
|
struct Module;
|
|
|
|
struct NamedModule {
|
|
std::string name;
|
|
std::shared_ptr<Module> module;
|
|
};
|
|
|
|
struct NamedIValue {
|
|
NamedIValue(std::string name, TypePtr type, IValue ivalue)
|
|
: name_(name),
|
|
type(type),
|
|
ivalue(torch::make_unique<IValue>(std::move(ivalue))) {}
|
|
|
|
IValue* slot() const {
|
|
return ivalue.get();
|
|
}
|
|
const std::string name_;
|
|
const TypePtr type;
|
|
std::unique_ptr<IValue> ivalue;
|
|
};
|
|
|
|
struct Module {
|
|
TH_DISALLOW_COPY_AND_ASSIGN(Module);
|
|
Module()
|
|
: modules("Module"),
|
|
parameters("Parameter"),
|
|
attributes("Attributes"),
|
|
methods("Method"),
|
|
optimize(true) {}
|
|
|
|
// note this doesn't change the flags of existing methods just ones
|
|
// added afterward.
|
|
void set_optimized(bool o) {
|
|
optimize = o;
|
|
}
|
|
|
|
bool is_optimized() const {
|
|
return optimize;
|
|
}
|
|
|
|
IValue forward(std::vector<IValue> inputs) {
|
|
return get_method("forward")(std::move(inputs));
|
|
}
|
|
|
|
void register_buffer(const std::string& name, autograd::Variable v) {
|
|
if (auto b = attributes.find(name)) {
|
|
AT_ASSERT(b->type->isSubtypeOf(TensorType::get()));
|
|
*b->slot() = v;
|
|
return;
|
|
}
|
|
attributes.insert(name, NamedIValue(name, TensorType::get(), std::move(v)));
|
|
}
|
|
void register_parameter(
|
|
const std::string& name,
|
|
autograd::Variable v,
|
|
bool is_buffer) {
|
|
if (is_buffer) {
|
|
register_buffer(name, std::move(v));
|
|
return;
|
|
}
|
|
if (auto p = parameters.find(name)) {
|
|
*p->slot() = v;
|
|
return;
|
|
}
|
|
parameters.insert(name, NamedIValue(name, TensorType::get(), std::move(v)));
|
|
}
|
|
void register_attribute(
|
|
const std::string& name,
|
|
const TypePtr type,
|
|
IValue ivalue) {
|
|
attributes.insert(name, NamedIValue(name, type, ivalue));
|
|
}
|
|
void register_module(
|
|
const std::string& name,
|
|
std::shared_ptr<Module> module) {
|
|
modules.insert(name, {name, std::move(module)});
|
|
}
|
|
|
|
Method& create_method(
|
|
const std::string& name,
|
|
std::shared_ptr<Graph> graph,
|
|
std::vector<IValue*> member_inputs) {
|
|
AT_ASSERT(graph);
|
|
std::unique_ptr<Method> method(new Method(
|
|
this,
|
|
name,
|
|
optimize,
|
|
std::move(graph),
|
|
std::move(member_inputs),
|
|
nullptr));
|
|
return *methods.insert(name, std::move(method));
|
|
}
|
|
|
|
Method& create_method(
|
|
const std::string& name,
|
|
std::function<void(Method&)> creator) {
|
|
std::unique_ptr<Method> method(new Method(
|
|
this,
|
|
name,
|
|
optimize,
|
|
std::make_shared<Graph>(),
|
|
{},
|
|
std::move(creator)));
|
|
return *methods.insert(name, std::move(method));
|
|
}
|
|
|
|
IValue* parameter_slot(const std::string& name) const {
|
|
return parameters[name].slot();
|
|
}
|
|
|
|
void set_parameter(const std::string& name, at::Tensor v) {
|
|
*parameter_slot(name) = std::move(v);
|
|
}
|
|
|
|
autograd::Variable get_parameter(const std::string& name) const {
|
|
return autograd::as_variable_ref(parameter_slot(name)->toTensor());
|
|
}
|
|
autograd::Variable get_buffer(const std::string& name) const {
|
|
return autograd::as_variable_ref(attributes.find(name)->slot()->toTensor());
|
|
}
|
|
|
|
// each module owns its method. The reference returned here
|
|
// is guarenteed to stay valid until this module has been destroyed
|
|
Method& get_method(const std::string& name) const {
|
|
return *methods[name];
|
|
}
|
|
|
|
std::shared_ptr<Module> get_module(const std::string& name) const {
|
|
return modules[name].module;
|
|
}
|
|
|
|
const torch::OrderedDict<std::string, NamedModule>& get_modules() const {
|
|
return modules;
|
|
}
|
|
const torch::OrderedDict<std::string, NamedIValue>& get_parameters()
|
|
const {
|
|
return parameters;
|
|
}
|
|
const torch::OrderedDict<std::string, NamedIValue>& get_attributes()
|
|
const {
|
|
return attributes;
|
|
}
|
|
const torch::OrderedDict<std::string, std::unique_ptr<Method>>& get_methods()
|
|
const {
|
|
return methods;
|
|
}
|
|
|
|
NamedIValue* find_parameter(const std::string& name) {
|
|
return parameters.find(name);
|
|
}
|
|
NamedIValue* find_attribute(const std::string& name) {
|
|
return attributes.find(name);
|
|
}
|
|
NamedIValue* find_buffer(const std::string& name) {
|
|
auto b = attributes.find(name);
|
|
if (b && b->type->isSubtypeOf(TensorType::get())) {
|
|
return b;
|
|
}
|
|
return nullptr;
|
|
}
|
|
NamedModule* find_module(const std::string& name) {
|
|
return modules.find(name);
|
|
}
|
|
Method* find_method(const std::string& name) {
|
|
if (auto* pm = methods.find(name)) {
|
|
return pm->get();
|
|
}
|
|
return nullptr;
|
|
}
|
|
void apply(std::function<void(Module&)> fn) {
|
|
for (auto& submod : get_modules()) {
|
|
submod.value().module->apply(fn);
|
|
}
|
|
fn(*this);
|
|
}
|
|
/// Enables "training" mode.
|
|
void train(bool on = true) {
|
|
for (auto& submod : get_modules()) {
|
|
submod->module->train(on);
|
|
}
|
|
register_buffer("training", torch::tensor(on ? 1 : 0, at::kLong));
|
|
}
|
|
/// Calls train(false) to enable "eval" mode.
|
|
/// Do not override this method, override `train()` instead.
|
|
void eval() {
|
|
train(/*on=*/false);
|
|
}
|
|
/// True if the module is in training mode.
|
|
bool is_training() {
|
|
if (auto p = find_buffer("training")) {
|
|
return p->slot()->toTensor().item<int64_t>() == 1;
|
|
}
|
|
// We are in training mode by default
|
|
return true;
|
|
}
|
|
|
|
/// Recursively casts all parameters to the given `dtype` and `device`.
|
|
///
|
|
/// If `non_blocking` is true and the source is in pinned memory and
|
|
/// destination is on the GPU or vice versa, the copy is performed
|
|
/// asynchronously with respect to the host. Otherwise, the argument has no
|
|
/// effect.
|
|
TORCH_API void to(
|
|
at::Device device,
|
|
at::ScalarType dtype,
|
|
bool non_blocking = false);
|
|
|
|
/// Recursively casts all parameters to the given dtype.
|
|
///
|
|
/// If `non_blocking` is true and the source is in pinned memory and
|
|
/// destination is on the GPU or vice versa, the copy is performed
|
|
/// asynchronously with respect to the host. Otherwise, the argument has no
|
|
/// effect.
|
|
TORCH_API void to(at::ScalarType dtype, bool non_blocking = false);
|
|
|
|
/// Recursively moves all parameters to the given device.
|
|
///
|
|
/// If `non_blocking` is true and the source is in pinned memory and
|
|
/// destination is on the GPU or vice versa, the copy is performed
|
|
/// asynchronously with respect to the host. Otherwise, the argument has no
|
|
/// effect.
|
|
TORCH_API void to(at::Device device, bool non_blocking = false);
|
|
|
|
/// Run a method from this module.
|
|
///
|
|
/// For example:
|
|
/// @code
|
|
/// IValue output = module->run("relu_script", a, b);
|
|
/// @endcode
|
|
///
|
|
/// To get a compile a module from a source string, see torch::jit::compile
|
|
///
|
|
/// @param method_name The name of the method to run
|
|
/// @param args Arguments to be passed to the method
|
|
/// @return An IValue containing the return value (or values if it is a tuple)
|
|
/// from the method
|
|
template <typename... Types>
|
|
IValue run_method(const std::string& method_name, Types&&... args) {
|
|
return get_method(method_name)({IValue(std::forward<Types>(args))...});
|
|
}
|
|
|
|
void save(
|
|
std::ostream& out,
|
|
const ExtraFilesMap& extra_files = ExtraFilesMap());
|
|
|
|
void save(
|
|
const std::string& filename,
|
|
const ExtraFilesMap& extra_files = ExtraFilesMap());
|
|
|
|
void copy_into(
|
|
ModuleLookup module_lookup,
|
|
// parameter_remap is needed when a parent module uses a parameter of a
|
|
// submodule
|
|
std::unordered_map<IValue*, IValue*>& parameter_remap,
|
|
std::vector<std::string> names = {}) const {
|
|
auto curr = module_lookup(names);
|
|
for (auto& kv : parameters) {
|
|
curr->register_parameter(
|
|
kv.key(),
|
|
kv.value().slot()->toTensor(),
|
|
/*is_buffer=*/false);
|
|
parameter_remap[kv.value().slot()] = curr->parameter_slot(kv.key());
|
|
}
|
|
for (auto& kv : attributes) {
|
|
if (!kv.value().type->isSubtypeOf(TensorType::get())) {
|
|
continue;
|
|
}
|
|
curr->register_buffer(
|
|
kv.key(),
|
|
kv.value().slot()->toTensor());
|
|
parameter_remap[kv.value().slot()] = curr->find_buffer(kv.key())->slot();
|
|
}
|
|
for (auto& kv : modules) {
|
|
names.push_back(kv.key());
|
|
// Submodules must be translated first, otherwise parameter_remap entries
|
|
// will not be filled in for methods of this module.
|
|
kv.value().module->copy_into(module_lookup, parameter_remap, names);
|
|
names.pop_back();
|
|
}
|
|
for (auto& kv : methods) {
|
|
std::vector<IValue*> initial_ivalues;
|
|
for (auto& p : kv.value()->initial_ivalues()) {
|
|
initial_ivalues.push_back(parameter_remap.at(p));
|
|
}
|
|
curr->create_method(
|
|
kv.key(), kv.value()->graph()->copy(), initial_ivalues);
|
|
}
|
|
}
|
|
|
|
private:
|
|
void to_impl(
|
|
const c10::optional<at::Device>& device,
|
|
const c10::optional<at::ScalarType>& dtype,
|
|
bool non_blocking);
|
|
|
|
// invariant: to ensure initial_ivalues of Methods stay valid,
|
|
// it is only legal to _add_ new modules and parameters.
|
|
// removing them will allow initial_ivalues to point to invalid parameters
|
|
// no such restriction exists for methods
|
|
torch::OrderedDict<std::string, NamedModule> modules;
|
|
torch::OrderedDict<std::string, NamedIValue> parameters;
|
|
torch::OrderedDict<std::string, NamedIValue> attributes;
|
|
torch::OrderedDict<std::string, std::unique_ptr<Method>> methods;
|
|
bool optimize;
|
|
};
|
|
|
|
// returns nullptr and fills in failure_messages if the callee does not
|
|
// match the functions schema
|
|
Value* try_emit_call_to(
|
|
Graph& graph,
|
|
const SourceRange& loc,
|
|
Method& callee,
|
|
c10::optional<NamedValue> self,
|
|
ArrayRef<NamedValue> args,
|
|
ArrayRef<NamedValue> kwargs,
|
|
std::stringstream& failure_messages,
|
|
// when callee uses no parameters (e.g. it is a function in a compilation
|
|
// unit, and not a method), then nullptr can be passed as caller.
|
|
Method* caller,
|
|
bool conv_tensors_to_nums);
|
|
} // namespace script
|
|
} // namespace jit
|
|
} // namespace torch
|