mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Finally we have this PR to merge allow_in_graph/inline/skip trace rules into ```trace_rules.lookup_inner```, where we can define and lookup trace rules at both function level and file level. Going forward, this is the central place that we define and consulte Dynamo trace rule for any function. * ```trace_rules.looup``` is the API can return allow_in_graph, inline or skip. * ```skipfiles.check``` is the API can return inline or skip, since we have multiple places that only do inline/skip check. * I'll move ```skipfiles.check``` to ```trace_rules.check``` as one of the follow-ups. * Both functions consulte ```trace_rules.lookup_inner``` to get the tracing rule. To avoid a single big PR, I left a few items as the follow-ups: * Remove ```skipfiles.py``` and merge the code into ```trace_rules.py```. * We do double check in ```symbolic_convert.check_inlineable```, will refactor and simplify it. We should only do inline/skip check before generating ```SkipFilesVariable``` and ```UserFunctionVariable```. * Rename ```SkipFilesVariable``` as ```SkipFunctionVariable```, since we only handle functions. * The inline/skip reasons are not logged for some cases, since the new lookup framework doesn't always return inline/skip reasons. I'll refactor loggings to record the inline/skip reason in next step. Pull Request resolved: https://github.com/pytorch/pytorch/pull/118971 Approved by: https://github.com/jansel
926 lines
34 KiB
Python
926 lines
34 KiB
Python
# mypy: ignore-errors
|
|
|
|
import collections
|
|
import contextlib
|
|
import functools
|
|
import importlib
|
|
import inspect
|
|
import itertools
|
|
import random
|
|
import sys
|
|
import threading
|
|
import types
|
|
from typing import Dict, List
|
|
|
|
try:
|
|
import numpy as np
|
|
except ModuleNotFoundError:
|
|
np = None
|
|
|
|
import torch._dynamo.config
|
|
|
|
import torch.nn
|
|
from torch._guards import TracingContext
|
|
|
|
from .. import variables
|
|
from ..exc import unimplemented
|
|
from ..guards import GuardBuilder, install_guard
|
|
from ..source import AttrSource, GetItemSource, ODictGetItemSource, RandomValueSource
|
|
from ..utils import (
|
|
all_hook_names,
|
|
build_checkpoint_variable,
|
|
check_constant_args,
|
|
get_custom_getattr,
|
|
has_torch_function,
|
|
is_namedtuple_cls,
|
|
is_utils_checkpoint,
|
|
istype,
|
|
namedtuple_fields,
|
|
object_has_getattribute,
|
|
proxy_args_kwargs,
|
|
tensortype_to_dtype,
|
|
)
|
|
from .base import MutableLocal, VariableTracker
|
|
from .ctx_manager import GenericContextWrappingVariable, NullContextVariable
|
|
from .dicts import DefaultDictVariable
|
|
|
|
|
|
class UserDefinedVariable(VariableTracker):
|
|
pass
|
|
|
|
|
|
class UserDefinedClassVariable(UserDefinedVariable):
|
|
def __init__(self, value, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.value = value
|
|
|
|
def as_python_constant(self):
|
|
return self.value
|
|
|
|
def python_type(self):
|
|
return type(self.value)
|
|
|
|
def as_proxy(self):
|
|
return self.value
|
|
|
|
def __repr__(self):
|
|
return f"UserDefinedClassVariable({self.value})"
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def _constant_fold_classes():
|
|
return {
|
|
torch.device,
|
|
torch.finfo,
|
|
torch.iinfo,
|
|
torch.Size,
|
|
}
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def _in_graph_classes():
|
|
return set(tensortype_to_dtype.keys()) | {
|
|
torch.Tensor,
|
|
torch.cuda.Stream,
|
|
torch.cuda.Event,
|
|
}
|
|
|
|
def can_constant_fold_through(self):
|
|
return self.value in self._constant_fold_classes()
|
|
|
|
def var_getattr(self, tx, name: str) -> "VariableTracker":
|
|
from .. import trace_rules
|
|
from . import ConstantVariable
|
|
from .builder import VariableBuilder
|
|
|
|
if name == "__name__":
|
|
return ConstantVariable.create(self.value.__name__)
|
|
|
|
source = AttrSource(self.source, name) if self.source is not None else None
|
|
try:
|
|
obj = inspect.getattr_static(self.value, name)
|
|
except AttributeError:
|
|
obj = None
|
|
|
|
if isinstance(obj, staticmethod):
|
|
func = obj.__get__(self.value)
|
|
if trace_rules.lookup(func) is not None:
|
|
return trace_rules.lookup(func).create_with_source(func, source=source)
|
|
else:
|
|
return variables.UserFunctionVariable(func, source=source)
|
|
elif isinstance(obj, classmethod):
|
|
return variables.UserMethodVariable(obj.__func__, self, source=source)
|
|
elif source and inspect.ismemberdescriptor(obj):
|
|
return VariableBuilder(tx, source)(obj.__get__(self.value))
|
|
|
|
# Special handling of collections.OrderedDict.fromkeys()
|
|
# Wrap it as GetAttrVariable(collections.OrderedDict, "fromkeys") to make it consistent with
|
|
# collections.defaultdict, and both will be handled at UserDefinedClassVariable.call_method().
|
|
# Otherwise, it would be wrapped as UserDefinedObjectVariable(collections.OrderedDict.fromkeys),
|
|
# and we need duplicate code to handle both cases.
|
|
if self.value is collections.OrderedDict and name == "fromkeys":
|
|
return super().var_getattr(tx, name)
|
|
|
|
if name in getattr(self.value, "__dict__", {}) or (
|
|
self.value.__module__.startswith("torch.")
|
|
or self.value.__module__ == "torch"
|
|
):
|
|
if source:
|
|
return VariableBuilder(tx, source)(obj)
|
|
elif ConstantVariable.is_literal(obj):
|
|
return ConstantVariable.create(obj)
|
|
|
|
return super().var_getattr(tx, name)
|
|
|
|
def _call_cross_entropy_loss(self, tx, args, kwargs):
|
|
"""
|
|
functional: input, target, weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean',
|
|
label_smoothing=0.0
|
|
|
|
non functional ctor: weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean',
|
|
label_smoothing=0.0
|
|
|
|
non functional loss call: input, target, optional_output
|
|
"""
|
|
from . import ConstantVariable
|
|
|
|
def normalize_args(
|
|
weight=ConstantVariable.create(None),
|
|
size_average=ConstantVariable.create(None),
|
|
ignore_index=ConstantVariable.create(-100),
|
|
reduce=ConstantVariable.create(None),
|
|
reduction=ConstantVariable.create("mean"),
|
|
label_smoothing=ConstantVariable.create(0.0),
|
|
):
|
|
return (
|
|
weight,
|
|
size_average,
|
|
ignore_index,
|
|
reduce,
|
|
reduction,
|
|
label_smoothing,
|
|
)
|
|
|
|
(
|
|
weight,
|
|
size_average,
|
|
ignore_index,
|
|
reduce_arg,
|
|
reduction,
|
|
label_smoothing,
|
|
) = normalize_args(*args, **kwargs)
|
|
|
|
def fake_cross_entropy_loss(input, target):
|
|
from .builder import wrap_fx_proxy
|
|
|
|
return wrap_fx_proxy(
|
|
tx=tx,
|
|
proxy=tx.output.create_proxy(
|
|
"call_function",
|
|
torch.nn.functional.cross_entropy,
|
|
*proxy_args_kwargs(
|
|
[
|
|
input,
|
|
target,
|
|
weight,
|
|
size_average,
|
|
ignore_index,
|
|
reduce_arg,
|
|
reduction,
|
|
label_smoothing,
|
|
],
|
|
{},
|
|
),
|
|
),
|
|
)
|
|
|
|
return variables.LambdaVariable(fake_cross_entropy_loss)
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
if (
|
|
name == "__subclasses__"
|
|
and len(args) == 0
|
|
and not kwargs
|
|
and "__subclasses__" not in self.value.__dict__
|
|
):
|
|
options = {"mutable_local": MutableLocal()}
|
|
subs_as_vars: List[VariableTracker] = list()
|
|
for sub in self.value.__subclasses__():
|
|
source = AttrSource(tx.import_source(sub.__module__), sub.__name__)
|
|
subs_as_vars.append(
|
|
variables.UserDefinedClassVariable(sub, source=source)
|
|
)
|
|
|
|
return variables.ListVariable(subs_as_vars, **options)
|
|
elif (
|
|
self.value in {collections.OrderedDict, collections.defaultdict}
|
|
and name == "fromkeys"
|
|
):
|
|
from .builtin import BuiltinVariable
|
|
|
|
return BuiltinVariable.call_custom_dict_fromkeys(
|
|
tx, self.value, *args, **kwargs
|
|
)
|
|
|
|
return super().call_method(tx, name, args, kwargs)
|
|
|
|
def call_function(
|
|
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
|
|
) -> "VariableTracker":
|
|
from ..side_effects import SideEffects
|
|
from .builder import SourcelessBuilder, wrap_fx_proxy
|
|
from .builtin import BuiltinVariable
|
|
|
|
constant_args = check_constant_args(args, kwargs)
|
|
|
|
if self.can_constant_fold_through() and constant_args:
|
|
# constant fold
|
|
return variables.ConstantVariable.create(
|
|
self.as_python_constant()(
|
|
*[x.as_python_constant() for x in args],
|
|
**{k: v.as_python_constant() for k, v in kwargs.items()},
|
|
),
|
|
)
|
|
elif self.value is torch.nn.CrossEntropyLoss:
|
|
return self._call_cross_entropy_loss(tx, args, kwargs)
|
|
elif self.value is contextlib.nullcontext:
|
|
return NullContextVariable()
|
|
elif self.value is collections.OrderedDict:
|
|
return BuiltinVariable.call_custom_dict(
|
|
tx, collections.OrderedDict, *args, **kwargs
|
|
)
|
|
elif (
|
|
self.value is collections.defaultdict
|
|
and len(args) <= 1
|
|
and DefaultDictVariable.is_supported_arg(args[0])
|
|
):
|
|
return DefaultDictVariable(
|
|
{},
|
|
collections.defaultdict,
|
|
args[0],
|
|
mutable_local=MutableLocal(),
|
|
)
|
|
elif self.value is collections.deque and not kwargs:
|
|
if len(args) == 0:
|
|
items = []
|
|
elif len(args) == 1 and args[0].has_unpack_var_sequence(tx):
|
|
items = args[0].unpack_var_sequence(tx)
|
|
else:
|
|
unimplemented("deque() with more than 1 arg not supported")
|
|
return variables.lists.DequeVariable(items, mutable_local=MutableLocal())
|
|
elif self.value is functools.partial:
|
|
if not args:
|
|
unimplemented("functools.partial malformed")
|
|
# The first arg, a callable (the ctor below will assert on types)
|
|
fn = args[0]
|
|
rest_args = args[1:]
|
|
# guards for the produced FunctoolsPartialVariable are installed in FunctoolsPartialVariable ctor from the
|
|
# args and keywords
|
|
return variables.functions.FunctoolsPartialVariable(
|
|
fn, args=rest_args, keywords=kwargs
|
|
)
|
|
elif (
|
|
issubclass(type(self.value), type)
|
|
and hasattr(
|
|
self.value, "__enter__"
|
|
) # TODO(voz): These can invoke user code!
|
|
and hasattr(
|
|
self.value, "__exit__"
|
|
) # TODO(voz): These can invoke user code!
|
|
and check_constant_args(args, kwargs)
|
|
and self.value.__init__ == object.__init__
|
|
and len(kwargs) == 0 # TODO(ybliang): support kwargs
|
|
):
|
|
unwrapped_args = [x.as_python_constant() for x in args]
|
|
return GenericContextWrappingVariable(
|
|
unwrapped_args,
|
|
cm_obj=self.value(*unwrapped_args),
|
|
)
|
|
|
|
elif is_namedtuple_cls(self.value):
|
|
fields = namedtuple_fields(self.value)
|
|
field_defaults = self.value._field_defaults
|
|
|
|
items = list(args)
|
|
items.extend([None] * (len(fields) - len(items)))
|
|
|
|
var_tracker_kwargs = {}
|
|
for field_name, var_tracker in zip(fields, items):
|
|
if var_tracker is None:
|
|
if field_name in kwargs:
|
|
field_var = kwargs[field_name]
|
|
else:
|
|
assert field_name in field_defaults
|
|
field_var = SourcelessBuilder()(tx, field_defaults[field_name])
|
|
var_tracker_kwargs[field_name] = field_var
|
|
|
|
for name, value in var_tracker_kwargs.items():
|
|
assert name in fields
|
|
items[fields.index(name)] = value
|
|
|
|
assert all(x is not None for x in items)
|
|
return variables.NamedTupleVariable(items, self.value)
|
|
elif (
|
|
inspect.getattr_static(self.value, "__new__", None) in (object.__new__,)
|
|
and SideEffects.cls_supports_mutation_side_effects(self.value)
|
|
and self.source
|
|
):
|
|
var = tx.output.side_effects.track_object_new(
|
|
self.source,
|
|
self.value,
|
|
variables.UnspecializedNNModuleVariable
|
|
if issubclass(self.value, torch.nn.Module)
|
|
else UserDefinedObjectVariable,
|
|
{},
|
|
)
|
|
if (
|
|
inspect.getattr_static(self.value, "__init__", None)
|
|
is torch.nn.Module.__init__
|
|
):
|
|
tx.output.side_effects.store_attr(
|
|
var,
|
|
"__call_nn_module_init",
|
|
variables.ConstantVariable.create(True),
|
|
)
|
|
return var
|
|
else:
|
|
var.call_method(tx, "__init__", args, kwargs)
|
|
return var
|
|
elif variables.CustomizedDictVariable.is_matching_cls(self.value):
|
|
options = {"mutable_local": MutableLocal()}
|
|
return variables.CustomizedDictVariable.create(
|
|
self.value, args, kwargs, options
|
|
)
|
|
elif variables.DataClassVariable.is_matching_cls(self.value):
|
|
options = {"mutable_local": MutableLocal()}
|
|
return variables.DataClassVariable.create(self.value, args, kwargs, options)
|
|
elif (
|
|
variables.RestrictedListSubclassVariable.is_matching_cls(self.value)
|
|
and self.source
|
|
):
|
|
return variables.RestrictedListSubclassVariable(
|
|
variables.BuiltinVariable(list).call_function(tx, args, kwargs).items,
|
|
user_cls=self.value,
|
|
user_cls_source=self.source,
|
|
mutable_local=MutableLocal(),
|
|
)
|
|
elif self.value in self._in_graph_classes():
|
|
# torch.LongTensor cannot accept a list of FakeTensors.
|
|
# So we stack the list of FakeTensors instead.
|
|
if (
|
|
np
|
|
and self.value in tensortype_to_dtype
|
|
and len(args) == 1
|
|
and isinstance(args[0], variables.ListVariable)
|
|
and len(args[0].items) > 1
|
|
and all(isinstance(x, variables.TensorVariable) for x in args[0].items)
|
|
):
|
|
# Stack FakeTensor
|
|
stacked = wrap_fx_proxy(
|
|
tx=tx,
|
|
proxy=tx.output.create_proxy(
|
|
"call_function",
|
|
torch.stack,
|
|
*proxy_args_kwargs(args, kwargs),
|
|
),
|
|
)
|
|
args = [stacked]
|
|
|
|
tensor_variable = wrap_fx_proxy(
|
|
tx=tx,
|
|
proxy=tx.output.create_proxy(
|
|
"call_function",
|
|
self.value,
|
|
*proxy_args_kwargs(args, kwargs),
|
|
),
|
|
)
|
|
|
|
return tensor_variable
|
|
|
|
return super().call_function(tx, args, kwargs)
|
|
|
|
def const_getattr(self, tx, name):
|
|
if name == "__name__":
|
|
return self.value.__name__
|
|
return super().const_getattr(tx, name)
|
|
|
|
|
|
class UserDefinedObjectVariable(UserDefinedVariable):
|
|
"""
|
|
Mostly objects of defined type. Catch-all for something where we only know the type.
|
|
"""
|
|
|
|
_nonvar_fields = {"value", "value_type", *UserDefinedVariable._nonvar_fields}
|
|
|
|
def __init__(self, value, value_type=None, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.value = value
|
|
self.value_type = value_type or type(value)
|
|
assert type(value) is self.value_type
|
|
|
|
def __str__(self):
|
|
inner = self.value_type.__name__
|
|
if inner in [
|
|
"builtin_function_or_method",
|
|
"getset_descriptor",
|
|
"method_descriptor",
|
|
"method",
|
|
]:
|
|
inner = str(getattr(self.value, "__name__", None))
|
|
return f"{self.__class__.__name__}({inner})"
|
|
|
|
def python_type(self):
|
|
return self.value_type
|
|
|
|
def guard_as_python_constant(self):
|
|
if self.source:
|
|
install_guard(self.source.make_guard(GuardBuilder.ID_MATCH))
|
|
return self.value
|
|
return super().guard_as_python_constant()
|
|
|
|
def torch_function_check(self):
|
|
assert has_torch_function(
|
|
self
|
|
), f"calling torch function on object without __torch_function__ {self}"
|
|
|
|
def get_torch_fn(self, tx):
|
|
self.torch_function_check()
|
|
from .torch_function import build_torch_function_fn
|
|
|
|
return build_torch_function_fn(tx, self.value, self.source)
|
|
|
|
def call_torch_function(self, tx, fn, types, args, kwargs):
|
|
self.torch_function_check()
|
|
|
|
from .torch_function import _get_subclass_type_var, call_torch_function
|
|
|
|
return call_torch_function(
|
|
tx,
|
|
_get_subclass_type_var(tx, self),
|
|
self.get_torch_fn(tx),
|
|
fn,
|
|
types,
|
|
args,
|
|
kwargs,
|
|
)
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def _supported_random_functions():
|
|
fns = {
|
|
random.random,
|
|
random.randint,
|
|
random.randrange,
|
|
random.uniform,
|
|
}
|
|
return fns
|
|
|
|
def _maybe_get_baseclass_method(self, name):
|
|
if name not in getattr(self.value, "__dict__", {}):
|
|
try:
|
|
return inspect.getattr_static(type(self.value), name)
|
|
except AttributeError:
|
|
pass
|
|
return None
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
from . import (
|
|
BuiltinVariable,
|
|
ConstantVariable,
|
|
TupleVariable,
|
|
UserMethodVariable,
|
|
)
|
|
|
|
method = self._maybe_get_baseclass_method(name)
|
|
if method is not None:
|
|
if method is object.__init__:
|
|
return ConstantVariable.create(None)
|
|
|
|
# [NOTE] OrderedDict, dict subtypes must always have source
|
|
# We cannot instantiate such subtypes in-graph due to builtin __new__
|
|
if method is collections.OrderedDict.keys:
|
|
# subclass of OrderedDict
|
|
assert not (args or kwargs)
|
|
assert self.source # OrderedDict, dict subtypes must always have source
|
|
keys = list(self.value.keys())
|
|
assert all(map(ConstantVariable.is_literal, keys))
|
|
install_guard(self.source.make_guard(GuardBuilder.DICT_CONST_KEYS))
|
|
return TupleVariable([ConstantVariable.create(k) for k in keys])
|
|
|
|
if (
|
|
method in (collections.OrderedDict.__contains__, dict.__contains__)
|
|
and len(args) == 1
|
|
and isinstance(args[0], (ConstantVariable, BuiltinVariable))
|
|
and inspect.getattr_static(type(self.value), "keys")
|
|
in (collections.OrderedDict.keys, dict.keys)
|
|
):
|
|
assert not kwargs
|
|
assert self.source # OrderedDict, dict subtypes must always have source
|
|
install_guard(self.source.make_guard(GuardBuilder.DICT_CONST_KEYS))
|
|
return ConstantVariable.create(
|
|
args[0].as_python_constant() in self.value
|
|
)
|
|
|
|
if method is collections.OrderedDict.items and isinstance(
|
|
self.value, collections.OrderedDict
|
|
):
|
|
assert self.source # OrderedDict, dict subtypes must always have source
|
|
assert not (args or kwargs)
|
|
items = []
|
|
keys = self.call_method(tx, "keys", [], {})
|
|
for key in keys.unpack_var_sequence(tx):
|
|
items.append(
|
|
TupleVariable(
|
|
[key, self.odict_getitem(tx, key)],
|
|
)
|
|
)
|
|
return TupleVariable(items)
|
|
|
|
if method is collections.OrderedDict.__getitem__ and len(args) == 1:
|
|
assert not kwargs
|
|
assert self.source # OrderedDict, dict subtypes must always have source
|
|
return self.odict_getitem(tx, args[0])
|
|
|
|
# check for methods implemented in C++
|
|
if isinstance(method, types.FunctionType):
|
|
source = (
|
|
None
|
|
if self.source is None
|
|
else AttrSource(AttrSource(self.source, "__class__"), name)
|
|
)
|
|
# TODO(jansel): add a guard to check for monkey patching?
|
|
return UserMethodVariable(method, self, source=source).call_function(
|
|
tx, args, kwargs
|
|
)
|
|
|
|
if method is list.__len__ and self.source and not (args or kwargs):
|
|
install_guard(self.source.make_guard(GuardBuilder.LIST_LENGTH))
|
|
return ConstantVariable(len(self.value))
|
|
|
|
return super().call_method(tx, name, args, kwargs)
|
|
|
|
def unpack_var_sequence(self, tx):
|
|
if (
|
|
self.source
|
|
and self._maybe_get_baseclass_method("__iter__") is list.__iter__
|
|
and self._maybe_get_baseclass_method("__len__") is list.__len__
|
|
and self._maybe_get_baseclass_method("__getitem__") is list.__getitem__
|
|
):
|
|
install_guard(self.source.make_guard(GuardBuilder.LIST_LENGTH))
|
|
return [
|
|
variables.LazyVariableTracker.create(
|
|
self.value[k],
|
|
source=GetItemSource(self.source, k),
|
|
)
|
|
for k in range(len(self.value))
|
|
]
|
|
return super().unpack_var_sequence(tx)
|
|
|
|
def is_supported_random(self):
|
|
try:
|
|
return self.value in self._supported_random_functions()
|
|
except TypeError:
|
|
# TypeError: unhashable type
|
|
return False
|
|
|
|
def call_function(
|
|
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
|
|
) -> "VariableTracker":
|
|
from .. import trace_rules
|
|
from .builder import VariableBuilder
|
|
|
|
if (
|
|
self.is_supported_random()
|
|
and all(k.is_python_constant() for k in args)
|
|
and all(v.is_python_constant() for v in kwargs.values())
|
|
):
|
|
args = [x.as_python_constant() for x in args]
|
|
kwargs = {k: v.as_python_constant() for k, v in kwargs.items()}
|
|
random_call_index = len(tx.output.random_calls)
|
|
example_value = self.value(*args, **kwargs)
|
|
source = RandomValueSource(random_call_index)
|
|
tx.output.random_calls.append((self.value, args, kwargs))
|
|
return VariableBuilder(tx, source).wrap_unspecialized_primitive(
|
|
example_value
|
|
)
|
|
elif istype(self.value, types.MethodType):
|
|
func = self.value.__func__
|
|
obj = self.value.__self__
|
|
if (
|
|
func is torch.utils._contextlib._DecoratorContextManager.clone
|
|
and variables.TorchCtxManagerClassVariable.is_matching_cls(
|
|
obj.__class__
|
|
)
|
|
and not (args or kwargs)
|
|
):
|
|
return variables.TorchCtxManagerClassVariable(
|
|
obj.__class__
|
|
).call_function(tx, args, kwargs)
|
|
|
|
if (
|
|
func is torch.autograd.grad_mode.inference_mode.clone
|
|
and obj.__class__ is torch.autograd.grad_mode.inference_mode
|
|
):
|
|
# simulate the inference_mode.clone implementation
|
|
var = variables.ConstantVariable(obj.mode)
|
|
return variables.TorchCtxManagerClassVariable(
|
|
obj.__class__
|
|
).call_function(tx, [var], kwargs)
|
|
elif (
|
|
istype(self.value, functools.partial)
|
|
and trace_rules.lookup(self.value.func)
|
|
== variables.TorchInGraphFunctionVariable
|
|
and all(
|
|
variables.ConstantVariable.is_literal(v)
|
|
for v in itertools.chain(self.value.args, self.value.keywords.values())
|
|
)
|
|
):
|
|
if self.source:
|
|
install_guard(
|
|
AttrSource(self.source, "func").make_guard(GuardBuilder.ID_MATCH),
|
|
AttrSource(self.source, "args").make_guard(
|
|
GuardBuilder.CONSTANT_MATCH
|
|
),
|
|
AttrSource(self.source, "keywords").make_guard(
|
|
GuardBuilder.CONSTANT_MATCH
|
|
),
|
|
)
|
|
|
|
partial_args = [
|
|
variables.ConstantVariable.create(v) for v in self.value.args
|
|
]
|
|
partial_args.extend(args)
|
|
partial_kwargs = {
|
|
k: variables.ConstantVariable.create(v)
|
|
for k, v in self.value.keywords.items()
|
|
}
|
|
partial_kwargs.update(kwargs)
|
|
if is_utils_checkpoint(self.value.func):
|
|
return build_checkpoint_variable().call_function(
|
|
tx, partial_args, partial_kwargs
|
|
)
|
|
return variables.TorchInGraphFunctionVariable(
|
|
self.value.func
|
|
).call_function(tx, partial_args, partial_kwargs)
|
|
elif callable(self.value):
|
|
if self.source:
|
|
install_guard(self.source.make_guard(GuardBuilder.FUNCTION_MATCH))
|
|
return self.call_method(tx, "__call__", args, kwargs)
|
|
|
|
return super().call_function(tx, args, kwargs)
|
|
|
|
def _check_for_getattribute(self):
|
|
if object_has_getattribute(self.value):
|
|
unimplemented("UserDefinedObjectVariable with custom __getattribute__")
|
|
|
|
def _check_for_getattr(self):
|
|
return get_custom_getattr(self.value)
|
|
|
|
def _getattr_static(self, name):
|
|
if (
|
|
isinstance(self.value, torch.nn.Module)
|
|
or "__slots__" in self.value.__class__.__dict__
|
|
or type(self.value) == threading.local
|
|
):
|
|
# getattr_static doesn't work on these
|
|
subobj = getattr(self.value, name)
|
|
else:
|
|
subobj = inspect.getattr_static(self.value, name)
|
|
return subobj
|
|
|
|
def var_getattr(self, tx, name):
|
|
from .. import trace_rules
|
|
from . import ConstantVariable
|
|
from .builder import VariableBuilder
|
|
|
|
value = self.value
|
|
source = AttrSource(self.source, name) if self.source else None
|
|
self._check_for_getattribute()
|
|
getattr_fn = self._check_for_getattr()
|
|
|
|
class NO_SUCH_SUBOBJ:
|
|
pass
|
|
|
|
try:
|
|
subobj = self._getattr_static(name)
|
|
except AttributeError:
|
|
subobj = NO_SUCH_SUBOBJ
|
|
if isinstance(getattr_fn, types.FunctionType):
|
|
return variables.UserMethodVariable(
|
|
getattr_fn, self, source=source
|
|
).call_function(tx, [ConstantVariable.create(name)], {})
|
|
elif getattr_fn is not None:
|
|
unimplemented("UserDefined with non-function __getattr__")
|
|
|
|
if isinstance(subobj, property):
|
|
return variables.UserMethodVariable(
|
|
subobj.fget, self, source=source
|
|
).call_function(tx, [], {})
|
|
elif isinstance(subobj, torch.distributions.utils.lazy_property):
|
|
subobj_var = UserDefinedObjectVariable(subobj, source=source)
|
|
return variables.UserMethodVariable(
|
|
subobj.__get__.__func__, subobj_var, source=source
|
|
).call_function(tx, [self], {})
|
|
elif isinstance(subobj, staticmethod):
|
|
func = subobj.__get__(self.value)
|
|
if source is not None and trace_rules.lookup(func) is not None:
|
|
return trace_rules.lookup(func).create_with_source(func, source=source)
|
|
else:
|
|
return variables.UserFunctionVariable(func, source=source)
|
|
elif isinstance(subobj, classmethod):
|
|
return variables.UserMethodVariable(subobj.__func__, self, source=source)
|
|
elif isinstance(subobj, types.FunctionType) or (
|
|
isinstance(subobj, types.MethodType)
|
|
and isinstance(self.value, torch.nn.Module)
|
|
):
|
|
# Since we get subobj via self._getattr_static, which may not trigger dynamic lookup.
|
|
# Static lookup can't tell us it's a method or function correctly,
|
|
# so we trigger dynamic lookup here to get the correct type.
|
|
dynamic_subobj = getattr(self.value, name)
|
|
|
|
while dynamic_subobj is subobj and hasattr(subobj, "_torchdynamo_inline"):
|
|
subobj = subobj._torchdynamo_inline
|
|
dynamic_subobj = subobj
|
|
source = AttrSource(source, "_torchdynamo_inline") if source else None
|
|
|
|
if isinstance(subobj, types.MethodType):
|
|
if dynamic_subobj.__self__ is not self.value:
|
|
unimplemented("__self__ mismatch for bound method")
|
|
func = subobj.__func__
|
|
else:
|
|
assert isinstance(subobj, types.FunctionType)
|
|
func = subobj
|
|
|
|
if inspect.ismethod(dynamic_subobj):
|
|
return variables.UserMethodVariable(func, self, source=source)
|
|
elif inspect.isfunction(dynamic_subobj):
|
|
if is_utils_checkpoint(func):
|
|
return build_checkpoint_variable(source=source)
|
|
elif source is not None and trace_rules.lookup(func) is not None:
|
|
return trace_rules.lookup(func).create_with_source(
|
|
func, source=source
|
|
)
|
|
else:
|
|
return variables.UserFunctionVariable(func, source=source)
|
|
|
|
if (
|
|
name in getattr(value, "__dict__", {})
|
|
or ConstantVariable.is_literal(subobj)
|
|
or isinstance(
|
|
subobj,
|
|
(
|
|
torch.Tensor,
|
|
torch.nn.Module,
|
|
),
|
|
)
|
|
):
|
|
if source:
|
|
return VariableBuilder(tx, source)(subobj)
|
|
elif ConstantVariable.is_literal(subobj):
|
|
return ConstantVariable.create(subobj)
|
|
|
|
if (
|
|
name not in getattr(value, "__dict__", {})
|
|
and type(value).__module__.startswith("torch.")
|
|
and "torch.optim" not in type(value).__module__
|
|
and not callable(value)
|
|
and not isinstance(subobj, types.MethodDescriptorType)
|
|
):
|
|
if not source:
|
|
assert getattr(
|
|
importlib.import_module(type(value).__module__),
|
|
type(value).__name__,
|
|
) is type(value)
|
|
source = AttrSource(
|
|
AttrSource(
|
|
tx.import_source(type(value).__module__), type(value).__name__
|
|
),
|
|
name,
|
|
)
|
|
|
|
return VariableBuilder(tx, source)(subobj)
|
|
options = {"source": source}
|
|
if isinstance(
|
|
subobj,
|
|
(
|
|
torch.distributions.constraints._Interval,
|
|
torch.distributions.constraints._Real,
|
|
torch.distributions.constraints.Constraint,
|
|
),
|
|
):
|
|
return UserDefinedObjectVariable(subobj, **options)
|
|
elif isinstance(self.value, torch.nn.Module) and name in all_hook_names:
|
|
assert isinstance(subobj, collections.OrderedDict)
|
|
if not subobj:
|
|
return variables.ConstDictVariable(
|
|
subobj, collections.OrderedDict, **options
|
|
)
|
|
|
|
if name == "__class__":
|
|
return UserDefinedClassVariable(type(self.value), **options)
|
|
|
|
return variables.GetAttrVariable(self, name, **options)
|
|
|
|
def call_hasattr(self, tx, name: str) -> "VariableTracker":
|
|
if tx.output.side_effects.is_attribute_mutation(self):
|
|
try:
|
|
result = tx.output.side_effects.load_attr(self, name, deleted_ok=True)
|
|
return variables.ConstantVariable.create(
|
|
not isinstance(result, variables.DeletedVariable)
|
|
)
|
|
except KeyError:
|
|
pass
|
|
if self.source:
|
|
install_guard(
|
|
AttrSource(self.source, name).make_guard(GuardBuilder.HASATTR)
|
|
)
|
|
if self._check_for_getattribute() or self._check_for_getattr():
|
|
unimplemented("hasattr with custom __getattr__")
|
|
|
|
try:
|
|
self._getattr_static(name)
|
|
return variables.ConstantVariable.create(True)
|
|
except AttributeError:
|
|
return variables.ConstantVariable.create(False)
|
|
|
|
def odict_getitem(self, tx, key):
|
|
from .builder import VariableBuilder
|
|
from .dicts import is_hashable
|
|
|
|
# TODO this should probably be merged with the dict handling
|
|
|
|
index = (
|
|
key.source
|
|
if is_hashable(key) and key.source is not None
|
|
else key.as_python_constant()
|
|
)
|
|
|
|
return VariableBuilder(
|
|
tx,
|
|
ODictGetItemSource(self.source, index),
|
|
)(collections.OrderedDict.__getitem__(self.value, key.as_python_constant()))
|
|
|
|
|
|
class KeyedJaggedTensorVariable(UserDefinedObjectVariable):
|
|
@staticmethod
|
|
def is_matching_object(obj):
|
|
mod = sys.modules.get("torchrec.sparse.jagged_tensor")
|
|
return mod is not None and type(obj) is mod.KeyedJaggedTensor
|
|
|
|
def __init__(self, value, **kwargs):
|
|
from torchrec.sparse.jagged_tensor import KeyedJaggedTensor
|
|
|
|
assert type(value) is KeyedJaggedTensor
|
|
super().__init__(value, **kwargs)
|
|
|
|
def var_getattr(self, tx, name):
|
|
if (
|
|
torch._dynamo.config.force_unspec_int_unbacked_size_like_on_torchrec_kjt
|
|
and self.source is not None
|
|
and name in ("_length_per_key", "_offset_per_key")
|
|
):
|
|
with TracingContext.patch(force_unspec_int_unbacked_size_like=True):
|
|
return super().var_getattr(tx, name)
|
|
return super().var_getattr(tx, name)
|
|
|
|
|
|
class RemovableHandleVariable(VariableTracker):
|
|
def __init__(
|
|
self,
|
|
mutable_local=None,
|
|
# index of the registration in the side_effects owned register_hook/handle list, used during removal.
|
|
idx=None,
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
self.mutable_local = mutable_local
|
|
self.idx = idx
|
|
|
|
def call_method(self, tx, method_name, args, kwargs):
|
|
if method_name == "remove":
|
|
tx.output.side_effects.remove_hook(self.idx)
|
|
return variables.ConstantVariable.create(None)
|
|
super().call_method(tx, method_name, args, kwargs)
|
|
|
|
# This reconstruct is actually pretty unique - it does not construct the object from scratch.
|
|
# Handles always come from a register_hook call on a tensor, and so, rerunning that for the codegen of a
|
|
# hook would be incorrect.
|
|
# Instead, the invariant is that codegen has already produced the handle and stored it at a known name.
|
|
def reconstruct(self, codegen):
|
|
if self.user_code_variable_name:
|
|
# It is an invariant that at this point, a STORE_FAST was executed for this name.
|
|
return [codegen.create_load(self.user_code_variable_name)]
|
|
return super().reconstruct(codegen)
|