pytorch/torch/_dynamo/variables/user_defined.py
Yanbo Liang 0f478d9d61 [Dynamo][15/N] Merge allow_in_graph/inline/skip trace rules check into trace_rule.lookup (#118971)
Finally we have this PR to merge allow_in_graph/inline/skip trace rules into ```trace_rules.lookup_inner```, where we can define and lookup trace rules at both function level and file level. Going forward, this is the central place that we define and consulte Dynamo trace rule for any function.
* ```trace_rules.looup``` is the API can return allow_in_graph, inline or skip.
* ```skipfiles.check``` is the API can return inline or skip, since we have multiple places that only do inline/skip check.
  *  I'll move ```skipfiles.check``` to ```trace_rules.check``` as one of the follow-ups.
* Both functions consulte ```trace_rules.lookup_inner``` to get the tracing rule.

To avoid a single big PR, I left a few items as the follow-ups:
* Remove ```skipfiles.py``` and merge the code into ```trace_rules.py```.
* We do double check in ```symbolic_convert.check_inlineable```, will refactor and simplify it. We should only do inline/skip check before generating ```SkipFilesVariable``` and ```UserFunctionVariable```.
* Rename ```SkipFilesVariable``` as ```SkipFunctionVariable```, since we only handle functions.
* The inline/skip reasons are not logged for some cases, since the new lookup framework doesn't always return inline/skip reasons. I'll refactor loggings to record the inline/skip reason in next step.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118971
Approved by: https://github.com/jansel
2024-02-07 05:15:39 +00:00

926 lines
34 KiB
Python

# mypy: ignore-errors
import collections
import contextlib
import functools
import importlib
import inspect
import itertools
import random
import sys
import threading
import types
from typing import Dict, List
try:
import numpy as np
except ModuleNotFoundError:
np = None
import torch._dynamo.config
import torch.nn
from torch._guards import TracingContext
from .. import variables
from ..exc import unimplemented
from ..guards import GuardBuilder, install_guard
from ..source import AttrSource, GetItemSource, ODictGetItemSource, RandomValueSource
from ..utils import (
all_hook_names,
build_checkpoint_variable,
check_constant_args,
get_custom_getattr,
has_torch_function,
is_namedtuple_cls,
is_utils_checkpoint,
istype,
namedtuple_fields,
object_has_getattribute,
proxy_args_kwargs,
tensortype_to_dtype,
)
from .base import MutableLocal, VariableTracker
from .ctx_manager import GenericContextWrappingVariable, NullContextVariable
from .dicts import DefaultDictVariable
class UserDefinedVariable(VariableTracker):
pass
class UserDefinedClassVariable(UserDefinedVariable):
def __init__(self, value, **kwargs):
super().__init__(**kwargs)
self.value = value
def as_python_constant(self):
return self.value
def python_type(self):
return type(self.value)
def as_proxy(self):
return self.value
def __repr__(self):
return f"UserDefinedClassVariable({self.value})"
@staticmethod
@functools.lru_cache(None)
def _constant_fold_classes():
return {
torch.device,
torch.finfo,
torch.iinfo,
torch.Size,
}
@staticmethod
@functools.lru_cache(None)
def _in_graph_classes():
return set(tensortype_to_dtype.keys()) | {
torch.Tensor,
torch.cuda.Stream,
torch.cuda.Event,
}
def can_constant_fold_through(self):
return self.value in self._constant_fold_classes()
def var_getattr(self, tx, name: str) -> "VariableTracker":
from .. import trace_rules
from . import ConstantVariable
from .builder import VariableBuilder
if name == "__name__":
return ConstantVariable.create(self.value.__name__)
source = AttrSource(self.source, name) if self.source is not None else None
try:
obj = inspect.getattr_static(self.value, name)
except AttributeError:
obj = None
if isinstance(obj, staticmethod):
func = obj.__get__(self.value)
if trace_rules.lookup(func) is not None:
return trace_rules.lookup(func).create_with_source(func, source=source)
else:
return variables.UserFunctionVariable(func, source=source)
elif isinstance(obj, classmethod):
return variables.UserMethodVariable(obj.__func__, self, source=source)
elif source and inspect.ismemberdescriptor(obj):
return VariableBuilder(tx, source)(obj.__get__(self.value))
# Special handling of collections.OrderedDict.fromkeys()
# Wrap it as GetAttrVariable(collections.OrderedDict, "fromkeys") to make it consistent with
# collections.defaultdict, and both will be handled at UserDefinedClassVariable.call_method().
# Otherwise, it would be wrapped as UserDefinedObjectVariable(collections.OrderedDict.fromkeys),
# and we need duplicate code to handle both cases.
if self.value is collections.OrderedDict and name == "fromkeys":
return super().var_getattr(tx, name)
if name in getattr(self.value, "__dict__", {}) or (
self.value.__module__.startswith("torch.")
or self.value.__module__ == "torch"
):
if source:
return VariableBuilder(tx, source)(obj)
elif ConstantVariable.is_literal(obj):
return ConstantVariable.create(obj)
return super().var_getattr(tx, name)
def _call_cross_entropy_loss(self, tx, args, kwargs):
"""
functional: input, target, weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean',
label_smoothing=0.0
non functional ctor: weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean',
label_smoothing=0.0
non functional loss call: input, target, optional_output
"""
from . import ConstantVariable
def normalize_args(
weight=ConstantVariable.create(None),
size_average=ConstantVariable.create(None),
ignore_index=ConstantVariable.create(-100),
reduce=ConstantVariable.create(None),
reduction=ConstantVariable.create("mean"),
label_smoothing=ConstantVariable.create(0.0),
):
return (
weight,
size_average,
ignore_index,
reduce,
reduction,
label_smoothing,
)
(
weight,
size_average,
ignore_index,
reduce_arg,
reduction,
label_smoothing,
) = normalize_args(*args, **kwargs)
def fake_cross_entropy_loss(input, target):
from .builder import wrap_fx_proxy
return wrap_fx_proxy(
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
torch.nn.functional.cross_entropy,
*proxy_args_kwargs(
[
input,
target,
weight,
size_average,
ignore_index,
reduce_arg,
reduction,
label_smoothing,
],
{},
),
),
)
return variables.LambdaVariable(fake_cross_entropy_loss)
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
if (
name == "__subclasses__"
and len(args) == 0
and not kwargs
and "__subclasses__" not in self.value.__dict__
):
options = {"mutable_local": MutableLocal()}
subs_as_vars: List[VariableTracker] = list()
for sub in self.value.__subclasses__():
source = AttrSource(tx.import_source(sub.__module__), sub.__name__)
subs_as_vars.append(
variables.UserDefinedClassVariable(sub, source=source)
)
return variables.ListVariable(subs_as_vars, **options)
elif (
self.value in {collections.OrderedDict, collections.defaultdict}
and name == "fromkeys"
):
from .builtin import BuiltinVariable
return BuiltinVariable.call_custom_dict_fromkeys(
tx, self.value, *args, **kwargs
)
return super().call_method(tx, name, args, kwargs)
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
from ..side_effects import SideEffects
from .builder import SourcelessBuilder, wrap_fx_proxy
from .builtin import BuiltinVariable
constant_args = check_constant_args(args, kwargs)
if self.can_constant_fold_through() and constant_args:
# constant fold
return variables.ConstantVariable.create(
self.as_python_constant()(
*[x.as_python_constant() for x in args],
**{k: v.as_python_constant() for k, v in kwargs.items()},
),
)
elif self.value is torch.nn.CrossEntropyLoss:
return self._call_cross_entropy_loss(tx, args, kwargs)
elif self.value is contextlib.nullcontext:
return NullContextVariable()
elif self.value is collections.OrderedDict:
return BuiltinVariable.call_custom_dict(
tx, collections.OrderedDict, *args, **kwargs
)
elif (
self.value is collections.defaultdict
and len(args) <= 1
and DefaultDictVariable.is_supported_arg(args[0])
):
return DefaultDictVariable(
{},
collections.defaultdict,
args[0],
mutable_local=MutableLocal(),
)
elif self.value is collections.deque and not kwargs:
if len(args) == 0:
items = []
elif len(args) == 1 and args[0].has_unpack_var_sequence(tx):
items = args[0].unpack_var_sequence(tx)
else:
unimplemented("deque() with more than 1 arg not supported")
return variables.lists.DequeVariable(items, mutable_local=MutableLocal())
elif self.value is functools.partial:
if not args:
unimplemented("functools.partial malformed")
# The first arg, a callable (the ctor below will assert on types)
fn = args[0]
rest_args = args[1:]
# guards for the produced FunctoolsPartialVariable are installed in FunctoolsPartialVariable ctor from the
# args and keywords
return variables.functions.FunctoolsPartialVariable(
fn, args=rest_args, keywords=kwargs
)
elif (
issubclass(type(self.value), type)
and hasattr(
self.value, "__enter__"
) # TODO(voz): These can invoke user code!
and hasattr(
self.value, "__exit__"
) # TODO(voz): These can invoke user code!
and check_constant_args(args, kwargs)
and self.value.__init__ == object.__init__
and len(kwargs) == 0 # TODO(ybliang): support kwargs
):
unwrapped_args = [x.as_python_constant() for x in args]
return GenericContextWrappingVariable(
unwrapped_args,
cm_obj=self.value(*unwrapped_args),
)
elif is_namedtuple_cls(self.value):
fields = namedtuple_fields(self.value)
field_defaults = self.value._field_defaults
items = list(args)
items.extend([None] * (len(fields) - len(items)))
var_tracker_kwargs = {}
for field_name, var_tracker in zip(fields, items):
if var_tracker is None:
if field_name in kwargs:
field_var = kwargs[field_name]
else:
assert field_name in field_defaults
field_var = SourcelessBuilder()(tx, field_defaults[field_name])
var_tracker_kwargs[field_name] = field_var
for name, value in var_tracker_kwargs.items():
assert name in fields
items[fields.index(name)] = value
assert all(x is not None for x in items)
return variables.NamedTupleVariable(items, self.value)
elif (
inspect.getattr_static(self.value, "__new__", None) in (object.__new__,)
and SideEffects.cls_supports_mutation_side_effects(self.value)
and self.source
):
var = tx.output.side_effects.track_object_new(
self.source,
self.value,
variables.UnspecializedNNModuleVariable
if issubclass(self.value, torch.nn.Module)
else UserDefinedObjectVariable,
{},
)
if (
inspect.getattr_static(self.value, "__init__", None)
is torch.nn.Module.__init__
):
tx.output.side_effects.store_attr(
var,
"__call_nn_module_init",
variables.ConstantVariable.create(True),
)
return var
else:
var.call_method(tx, "__init__", args, kwargs)
return var
elif variables.CustomizedDictVariable.is_matching_cls(self.value):
options = {"mutable_local": MutableLocal()}
return variables.CustomizedDictVariable.create(
self.value, args, kwargs, options
)
elif variables.DataClassVariable.is_matching_cls(self.value):
options = {"mutable_local": MutableLocal()}
return variables.DataClassVariable.create(self.value, args, kwargs, options)
elif (
variables.RestrictedListSubclassVariable.is_matching_cls(self.value)
and self.source
):
return variables.RestrictedListSubclassVariable(
variables.BuiltinVariable(list).call_function(tx, args, kwargs).items,
user_cls=self.value,
user_cls_source=self.source,
mutable_local=MutableLocal(),
)
elif self.value in self._in_graph_classes():
# torch.LongTensor cannot accept a list of FakeTensors.
# So we stack the list of FakeTensors instead.
if (
np
and self.value in tensortype_to_dtype
and len(args) == 1
and isinstance(args[0], variables.ListVariable)
and len(args[0].items) > 1
and all(isinstance(x, variables.TensorVariable) for x in args[0].items)
):
# Stack FakeTensor
stacked = wrap_fx_proxy(
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
torch.stack,
*proxy_args_kwargs(args, kwargs),
),
)
args = [stacked]
tensor_variable = wrap_fx_proxy(
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
self.value,
*proxy_args_kwargs(args, kwargs),
),
)
return tensor_variable
return super().call_function(tx, args, kwargs)
def const_getattr(self, tx, name):
if name == "__name__":
return self.value.__name__
return super().const_getattr(tx, name)
class UserDefinedObjectVariable(UserDefinedVariable):
"""
Mostly objects of defined type. Catch-all for something where we only know the type.
"""
_nonvar_fields = {"value", "value_type", *UserDefinedVariable._nonvar_fields}
def __init__(self, value, value_type=None, **kwargs):
super().__init__(**kwargs)
self.value = value
self.value_type = value_type or type(value)
assert type(value) is self.value_type
def __str__(self):
inner = self.value_type.__name__
if inner in [
"builtin_function_or_method",
"getset_descriptor",
"method_descriptor",
"method",
]:
inner = str(getattr(self.value, "__name__", None))
return f"{self.__class__.__name__}({inner})"
def python_type(self):
return self.value_type
def guard_as_python_constant(self):
if self.source:
install_guard(self.source.make_guard(GuardBuilder.ID_MATCH))
return self.value
return super().guard_as_python_constant()
def torch_function_check(self):
assert has_torch_function(
self
), f"calling torch function on object without __torch_function__ {self}"
def get_torch_fn(self, tx):
self.torch_function_check()
from .torch_function import build_torch_function_fn
return build_torch_function_fn(tx, self.value, self.source)
def call_torch_function(self, tx, fn, types, args, kwargs):
self.torch_function_check()
from .torch_function import _get_subclass_type_var, call_torch_function
return call_torch_function(
tx,
_get_subclass_type_var(tx, self),
self.get_torch_fn(tx),
fn,
types,
args,
kwargs,
)
@staticmethod
@functools.lru_cache(None)
def _supported_random_functions():
fns = {
random.random,
random.randint,
random.randrange,
random.uniform,
}
return fns
def _maybe_get_baseclass_method(self, name):
if name not in getattr(self.value, "__dict__", {}):
try:
return inspect.getattr_static(type(self.value), name)
except AttributeError:
pass
return None
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
from . import (
BuiltinVariable,
ConstantVariable,
TupleVariable,
UserMethodVariable,
)
method = self._maybe_get_baseclass_method(name)
if method is not None:
if method is object.__init__:
return ConstantVariable.create(None)
# [NOTE] OrderedDict, dict subtypes must always have source
# We cannot instantiate such subtypes in-graph due to builtin __new__
if method is collections.OrderedDict.keys:
# subclass of OrderedDict
assert not (args or kwargs)
assert self.source # OrderedDict, dict subtypes must always have source
keys = list(self.value.keys())
assert all(map(ConstantVariable.is_literal, keys))
install_guard(self.source.make_guard(GuardBuilder.DICT_CONST_KEYS))
return TupleVariable([ConstantVariable.create(k) for k in keys])
if (
method in (collections.OrderedDict.__contains__, dict.__contains__)
and len(args) == 1
and isinstance(args[0], (ConstantVariable, BuiltinVariable))
and inspect.getattr_static(type(self.value), "keys")
in (collections.OrderedDict.keys, dict.keys)
):
assert not kwargs
assert self.source # OrderedDict, dict subtypes must always have source
install_guard(self.source.make_guard(GuardBuilder.DICT_CONST_KEYS))
return ConstantVariable.create(
args[0].as_python_constant() in self.value
)
if method is collections.OrderedDict.items and isinstance(
self.value, collections.OrderedDict
):
assert self.source # OrderedDict, dict subtypes must always have source
assert not (args or kwargs)
items = []
keys = self.call_method(tx, "keys", [], {})
for key in keys.unpack_var_sequence(tx):
items.append(
TupleVariable(
[key, self.odict_getitem(tx, key)],
)
)
return TupleVariable(items)
if method is collections.OrderedDict.__getitem__ and len(args) == 1:
assert not kwargs
assert self.source # OrderedDict, dict subtypes must always have source
return self.odict_getitem(tx, args[0])
# check for methods implemented in C++
if isinstance(method, types.FunctionType):
source = (
None
if self.source is None
else AttrSource(AttrSource(self.source, "__class__"), name)
)
# TODO(jansel): add a guard to check for monkey patching?
return UserMethodVariable(method, self, source=source).call_function(
tx, args, kwargs
)
if method is list.__len__ and self.source and not (args or kwargs):
install_guard(self.source.make_guard(GuardBuilder.LIST_LENGTH))
return ConstantVariable(len(self.value))
return super().call_method(tx, name, args, kwargs)
def unpack_var_sequence(self, tx):
if (
self.source
and self._maybe_get_baseclass_method("__iter__") is list.__iter__
and self._maybe_get_baseclass_method("__len__") is list.__len__
and self._maybe_get_baseclass_method("__getitem__") is list.__getitem__
):
install_guard(self.source.make_guard(GuardBuilder.LIST_LENGTH))
return [
variables.LazyVariableTracker.create(
self.value[k],
source=GetItemSource(self.source, k),
)
for k in range(len(self.value))
]
return super().unpack_var_sequence(tx)
def is_supported_random(self):
try:
return self.value in self._supported_random_functions()
except TypeError:
# TypeError: unhashable type
return False
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
from .. import trace_rules
from .builder import VariableBuilder
if (
self.is_supported_random()
and all(k.is_python_constant() for k in args)
and all(v.is_python_constant() for v in kwargs.values())
):
args = [x.as_python_constant() for x in args]
kwargs = {k: v.as_python_constant() for k, v in kwargs.items()}
random_call_index = len(tx.output.random_calls)
example_value = self.value(*args, **kwargs)
source = RandomValueSource(random_call_index)
tx.output.random_calls.append((self.value, args, kwargs))
return VariableBuilder(tx, source).wrap_unspecialized_primitive(
example_value
)
elif istype(self.value, types.MethodType):
func = self.value.__func__
obj = self.value.__self__
if (
func is torch.utils._contextlib._DecoratorContextManager.clone
and variables.TorchCtxManagerClassVariable.is_matching_cls(
obj.__class__
)
and not (args or kwargs)
):
return variables.TorchCtxManagerClassVariable(
obj.__class__
).call_function(tx, args, kwargs)
if (
func is torch.autograd.grad_mode.inference_mode.clone
and obj.__class__ is torch.autograd.grad_mode.inference_mode
):
# simulate the inference_mode.clone implementation
var = variables.ConstantVariable(obj.mode)
return variables.TorchCtxManagerClassVariable(
obj.__class__
).call_function(tx, [var], kwargs)
elif (
istype(self.value, functools.partial)
and trace_rules.lookup(self.value.func)
== variables.TorchInGraphFunctionVariable
and all(
variables.ConstantVariable.is_literal(v)
for v in itertools.chain(self.value.args, self.value.keywords.values())
)
):
if self.source:
install_guard(
AttrSource(self.source, "func").make_guard(GuardBuilder.ID_MATCH),
AttrSource(self.source, "args").make_guard(
GuardBuilder.CONSTANT_MATCH
),
AttrSource(self.source, "keywords").make_guard(
GuardBuilder.CONSTANT_MATCH
),
)
partial_args = [
variables.ConstantVariable.create(v) for v in self.value.args
]
partial_args.extend(args)
partial_kwargs = {
k: variables.ConstantVariable.create(v)
for k, v in self.value.keywords.items()
}
partial_kwargs.update(kwargs)
if is_utils_checkpoint(self.value.func):
return build_checkpoint_variable().call_function(
tx, partial_args, partial_kwargs
)
return variables.TorchInGraphFunctionVariable(
self.value.func
).call_function(tx, partial_args, partial_kwargs)
elif callable(self.value):
if self.source:
install_guard(self.source.make_guard(GuardBuilder.FUNCTION_MATCH))
return self.call_method(tx, "__call__", args, kwargs)
return super().call_function(tx, args, kwargs)
def _check_for_getattribute(self):
if object_has_getattribute(self.value):
unimplemented("UserDefinedObjectVariable with custom __getattribute__")
def _check_for_getattr(self):
return get_custom_getattr(self.value)
def _getattr_static(self, name):
if (
isinstance(self.value, torch.nn.Module)
or "__slots__" in self.value.__class__.__dict__
or type(self.value) == threading.local
):
# getattr_static doesn't work on these
subobj = getattr(self.value, name)
else:
subobj = inspect.getattr_static(self.value, name)
return subobj
def var_getattr(self, tx, name):
from .. import trace_rules
from . import ConstantVariable
from .builder import VariableBuilder
value = self.value
source = AttrSource(self.source, name) if self.source else None
self._check_for_getattribute()
getattr_fn = self._check_for_getattr()
class NO_SUCH_SUBOBJ:
pass
try:
subobj = self._getattr_static(name)
except AttributeError:
subobj = NO_SUCH_SUBOBJ
if isinstance(getattr_fn, types.FunctionType):
return variables.UserMethodVariable(
getattr_fn, self, source=source
).call_function(tx, [ConstantVariable.create(name)], {})
elif getattr_fn is not None:
unimplemented("UserDefined with non-function __getattr__")
if isinstance(subobj, property):
return variables.UserMethodVariable(
subobj.fget, self, source=source
).call_function(tx, [], {})
elif isinstance(subobj, torch.distributions.utils.lazy_property):
subobj_var = UserDefinedObjectVariable(subobj, source=source)
return variables.UserMethodVariable(
subobj.__get__.__func__, subobj_var, source=source
).call_function(tx, [self], {})
elif isinstance(subobj, staticmethod):
func = subobj.__get__(self.value)
if source is not None and trace_rules.lookup(func) is not None:
return trace_rules.lookup(func).create_with_source(func, source=source)
else:
return variables.UserFunctionVariable(func, source=source)
elif isinstance(subobj, classmethod):
return variables.UserMethodVariable(subobj.__func__, self, source=source)
elif isinstance(subobj, types.FunctionType) or (
isinstance(subobj, types.MethodType)
and isinstance(self.value, torch.nn.Module)
):
# Since we get subobj via self._getattr_static, which may not trigger dynamic lookup.
# Static lookup can't tell us it's a method or function correctly,
# so we trigger dynamic lookup here to get the correct type.
dynamic_subobj = getattr(self.value, name)
while dynamic_subobj is subobj and hasattr(subobj, "_torchdynamo_inline"):
subobj = subobj._torchdynamo_inline
dynamic_subobj = subobj
source = AttrSource(source, "_torchdynamo_inline") if source else None
if isinstance(subobj, types.MethodType):
if dynamic_subobj.__self__ is not self.value:
unimplemented("__self__ mismatch for bound method")
func = subobj.__func__
else:
assert isinstance(subobj, types.FunctionType)
func = subobj
if inspect.ismethod(dynamic_subobj):
return variables.UserMethodVariable(func, self, source=source)
elif inspect.isfunction(dynamic_subobj):
if is_utils_checkpoint(func):
return build_checkpoint_variable(source=source)
elif source is not None and trace_rules.lookup(func) is not None:
return trace_rules.lookup(func).create_with_source(
func, source=source
)
else:
return variables.UserFunctionVariable(func, source=source)
if (
name in getattr(value, "__dict__", {})
or ConstantVariable.is_literal(subobj)
or isinstance(
subobj,
(
torch.Tensor,
torch.nn.Module,
),
)
):
if source:
return VariableBuilder(tx, source)(subobj)
elif ConstantVariable.is_literal(subobj):
return ConstantVariable.create(subobj)
if (
name not in getattr(value, "__dict__", {})
and type(value).__module__.startswith("torch.")
and "torch.optim" not in type(value).__module__
and not callable(value)
and not isinstance(subobj, types.MethodDescriptorType)
):
if not source:
assert getattr(
importlib.import_module(type(value).__module__),
type(value).__name__,
) is type(value)
source = AttrSource(
AttrSource(
tx.import_source(type(value).__module__), type(value).__name__
),
name,
)
return VariableBuilder(tx, source)(subobj)
options = {"source": source}
if isinstance(
subobj,
(
torch.distributions.constraints._Interval,
torch.distributions.constraints._Real,
torch.distributions.constraints.Constraint,
),
):
return UserDefinedObjectVariable(subobj, **options)
elif isinstance(self.value, torch.nn.Module) and name in all_hook_names:
assert isinstance(subobj, collections.OrderedDict)
if not subobj:
return variables.ConstDictVariable(
subobj, collections.OrderedDict, **options
)
if name == "__class__":
return UserDefinedClassVariable(type(self.value), **options)
return variables.GetAttrVariable(self, name, **options)
def call_hasattr(self, tx, name: str) -> "VariableTracker":
if tx.output.side_effects.is_attribute_mutation(self):
try:
result = tx.output.side_effects.load_attr(self, name, deleted_ok=True)
return variables.ConstantVariable.create(
not isinstance(result, variables.DeletedVariable)
)
except KeyError:
pass
if self.source:
install_guard(
AttrSource(self.source, name).make_guard(GuardBuilder.HASATTR)
)
if self._check_for_getattribute() or self._check_for_getattr():
unimplemented("hasattr with custom __getattr__")
try:
self._getattr_static(name)
return variables.ConstantVariable.create(True)
except AttributeError:
return variables.ConstantVariable.create(False)
def odict_getitem(self, tx, key):
from .builder import VariableBuilder
from .dicts import is_hashable
# TODO this should probably be merged with the dict handling
index = (
key.source
if is_hashable(key) and key.source is not None
else key.as_python_constant()
)
return VariableBuilder(
tx,
ODictGetItemSource(self.source, index),
)(collections.OrderedDict.__getitem__(self.value, key.as_python_constant()))
class KeyedJaggedTensorVariable(UserDefinedObjectVariable):
@staticmethod
def is_matching_object(obj):
mod = sys.modules.get("torchrec.sparse.jagged_tensor")
return mod is not None and type(obj) is mod.KeyedJaggedTensor
def __init__(self, value, **kwargs):
from torchrec.sparse.jagged_tensor import KeyedJaggedTensor
assert type(value) is KeyedJaggedTensor
super().__init__(value, **kwargs)
def var_getattr(self, tx, name):
if (
torch._dynamo.config.force_unspec_int_unbacked_size_like_on_torchrec_kjt
and self.source is not None
and name in ("_length_per_key", "_offset_per_key")
):
with TracingContext.patch(force_unspec_int_unbacked_size_like=True):
return super().var_getattr(tx, name)
return super().var_getattr(tx, name)
class RemovableHandleVariable(VariableTracker):
def __init__(
self,
mutable_local=None,
# index of the registration in the side_effects owned register_hook/handle list, used during removal.
idx=None,
**kwargs,
):
super().__init__(**kwargs)
self.mutable_local = mutable_local
self.idx = idx
def call_method(self, tx, method_name, args, kwargs):
if method_name == "remove":
tx.output.side_effects.remove_hook(self.idx)
return variables.ConstantVariable.create(None)
super().call_method(tx, method_name, args, kwargs)
# This reconstruct is actually pretty unique - it does not construct the object from scratch.
# Handles always come from a register_hook call on a tensor, and so, rerunning that for the codegen of a
# hook would be incorrect.
# Instead, the invariant is that codegen has already produced the handle and stored it at a known name.
def reconstruct(self, codegen):
if self.user_code_variable_name:
# It is an invariant that at this point, a STORE_FAST was executed for this name.
return [codegen.create_load(self.user_code_variable_name)]
return super().reconstruct(codegen)