mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Resubmit of https://github.com/pytorch/pytorch/pull/25980. Our old serialization was in tar (like `resnet18-5c106cde.pth` was in this format) so let's only support automatically unzip if checkpoints are zipfiles. We can still manage to get it work with tarfile, but let's delay it when there's an ask. Pull Request resolved: https://github.com/pytorch/pytorch/pull/26723 Differential Revision: D17551795 Pulled By: ailzhang fbshipit-source-id: 00b4e7621f1e753ca9aa07b1fe356278c6693a1e
500 lines
18 KiB
Python
500 lines
18 KiB
Python
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
import errno
|
|
import hashlib
|
|
import os
|
|
import re
|
|
import shutil
|
|
import sys
|
|
import tempfile
|
|
import torch
|
|
import warnings
|
|
import zipfile
|
|
|
|
if sys.version_info[0] == 2:
|
|
from urlparse import urlparse
|
|
from urllib2 import urlopen # noqa f811
|
|
else:
|
|
from urllib.request import urlopen
|
|
from urllib.parse import urlparse # noqa: F401
|
|
|
|
try:
|
|
from tqdm import tqdm
|
|
except ImportError:
|
|
# fake tqdm if it's not installed
|
|
class tqdm(object):
|
|
|
|
def __init__(self, total=None, disable=False,
|
|
unit=None, unit_scale=None, unit_divisor=None):
|
|
self.total = total
|
|
self.disable = disable
|
|
self.n = 0
|
|
# ignore unit, unit_scale, unit_divisor; they're just for real tqdm
|
|
|
|
def update(self, n):
|
|
if self.disable:
|
|
return
|
|
|
|
self.n += n
|
|
if self.total is None:
|
|
sys.stderr.write("\r{0:.1f} bytes".format(self.n))
|
|
else:
|
|
sys.stderr.write("\r{0:.1f}%".format(100 * self.n / float(self.total)))
|
|
sys.stderr.flush()
|
|
|
|
def __enter__(self):
|
|
return self
|
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
if self.disable:
|
|
return
|
|
|
|
sys.stderr.write('\n')
|
|
|
|
# matches bfd8deac from resnet18-bfd8deac.pth
|
|
HASH_REGEX = re.compile(r'-([a-f0-9]*)\.')
|
|
|
|
MASTER_BRANCH = 'master'
|
|
ENV_TORCH_HOME = 'TORCH_HOME'
|
|
ENV_XDG_CACHE_HOME = 'XDG_CACHE_HOME'
|
|
DEFAULT_CACHE_DIR = '~/.cache'
|
|
VAR_DEPENDENCY = 'dependencies'
|
|
MODULE_HUBCONF = 'hubconf.py'
|
|
READ_DATA_CHUNK = 8192
|
|
hub_dir = None
|
|
|
|
|
|
# Copied from tools/shared/module_loader to be included in torch package
|
|
def import_module(name, path):
|
|
if sys.version_info >= (3, 5):
|
|
import importlib.util
|
|
spec = importlib.util.spec_from_file_location(name, path)
|
|
module = importlib.util.module_from_spec(spec)
|
|
spec.loader.exec_module(module)
|
|
return module
|
|
elif sys.version_info >= (3, 0):
|
|
from importlib.machinery import SourceFileLoader
|
|
return SourceFileLoader(name, path).load_module()
|
|
else:
|
|
import imp
|
|
return imp.load_source(name, path)
|
|
|
|
|
|
def _remove_if_exists(path):
|
|
if os.path.exists(path):
|
|
if os.path.isfile(path):
|
|
os.remove(path)
|
|
else:
|
|
shutil.rmtree(path)
|
|
|
|
|
|
def _git_archive_link(repo_owner, repo_name, branch):
|
|
return 'https://github.com/{}/{}/archive/{}.zip'.format(repo_owner, repo_name, branch)
|
|
|
|
|
|
def _load_attr_from_module(module, func_name):
|
|
# Check if callable is defined in the module
|
|
if func_name not in dir(module):
|
|
return None
|
|
return getattr(module, func_name)
|
|
|
|
|
|
def _get_torch_home():
|
|
torch_home = os.path.expanduser(
|
|
os.getenv(ENV_TORCH_HOME,
|
|
os.path.join(os.getenv(ENV_XDG_CACHE_HOME, DEFAULT_CACHE_DIR), 'torch')))
|
|
return torch_home
|
|
|
|
|
|
def _setup_hubdir():
|
|
global hub_dir
|
|
# Issue warning to move data if old env is set
|
|
if os.getenv('TORCH_HUB'):
|
|
warnings.warn('TORCH_HUB is deprecated, please use env TORCH_HOME instead')
|
|
|
|
if hub_dir is None:
|
|
torch_home = _get_torch_home()
|
|
hub_dir = os.path.join(torch_home, 'hub')
|
|
|
|
if not os.path.exists(hub_dir):
|
|
os.makedirs(hub_dir)
|
|
|
|
|
|
def _parse_repo_info(github):
|
|
branch = MASTER_BRANCH
|
|
if ':' in github:
|
|
repo_info, branch = github.split(':')
|
|
else:
|
|
repo_info = github
|
|
repo_owner, repo_name = repo_info.split('/')
|
|
return repo_owner, repo_name, branch
|
|
|
|
|
|
def _get_cache_or_reload(github, force_reload, verbose=True):
|
|
# Parse github repo information
|
|
repo_owner, repo_name, branch = _parse_repo_info(github)
|
|
|
|
# Github renames folder repo-v1.x.x to repo-1.x.x
|
|
# We don't know the repo name before downloading the zip file
|
|
# and inspect name from it.
|
|
# To check if cached repo exists, we need to normalize folder names.
|
|
repo_dir = os.path.join(hub_dir, '_'.join([repo_owner, repo_name, branch]))
|
|
|
|
use_cache = (not force_reload) and os.path.exists(repo_dir)
|
|
|
|
if use_cache:
|
|
if verbose:
|
|
sys.stderr.write('Using cache found in {}\n'.format(repo_dir))
|
|
else:
|
|
cached_file = os.path.join(hub_dir, branch + '.zip')
|
|
_remove_if_exists(cached_file)
|
|
|
|
url = _git_archive_link(repo_owner, repo_name, branch)
|
|
sys.stderr.write('Downloading: \"{}\" to {}\n'.format(url, cached_file))
|
|
download_url_to_file(url, cached_file, progress=False)
|
|
|
|
with zipfile.ZipFile(cached_file) as cached_zipfile:
|
|
extraced_repo_name = cached_zipfile.infolist()[0].filename
|
|
extracted_repo = os.path.join(hub_dir, extraced_repo_name)
|
|
_remove_if_exists(extracted_repo)
|
|
# Unzip the code and rename the base folder
|
|
cached_zipfile.extractall(hub_dir)
|
|
|
|
_remove_if_exists(cached_file)
|
|
_remove_if_exists(repo_dir)
|
|
shutil.move(extracted_repo, repo_dir) # rename the repo
|
|
|
|
return repo_dir
|
|
|
|
|
|
def _check_module_exists(name):
|
|
if sys.version_info >= (3, 4):
|
|
import importlib.util
|
|
return importlib.util.find_spec(name) is not None
|
|
elif sys.version_info >= (3, 3):
|
|
# Special case for python3.3
|
|
import importlib.find_loader
|
|
return importlib.find_loader(name) is not None
|
|
else:
|
|
# NB: Python2.7 imp.find_module() doesn't respect PEP 302,
|
|
# it cannot find a package installed as .egg(zip) file.
|
|
# Here we use workaround from:
|
|
# https://stackoverflow.com/questions/28962344/imp-find-module-which-supports-zipped-eggs?lq=1
|
|
# Also imp doesn't handle hierarchical module names (names contains dots).
|
|
try:
|
|
# 1. Try imp.find_module(), which searches sys.path, but does
|
|
# not respect PEP 302 import hooks.
|
|
import imp
|
|
result = imp.find_module(name)
|
|
if result:
|
|
return True
|
|
except ImportError:
|
|
pass
|
|
path = sys.path
|
|
for item in path:
|
|
# 2. Scan path for import hooks. sys.path_importer_cache maps
|
|
# path items to optional "importer" objects, that implement
|
|
# find_module() etc. Note that path must be a subset of
|
|
# sys.path for this to work.
|
|
importer = sys.path_importer_cache.get(item)
|
|
if importer:
|
|
try:
|
|
result = importer.find_module(name, [item])
|
|
if result:
|
|
return True
|
|
except ImportError:
|
|
pass
|
|
return False
|
|
|
|
def _check_dependencies(m):
|
|
dependencies = _load_attr_from_module(m, VAR_DEPENDENCY)
|
|
|
|
if dependencies is not None:
|
|
missing_deps = [pkg for pkg in dependencies if not _check_module_exists(pkg)]
|
|
if len(missing_deps):
|
|
raise RuntimeError('Missing dependencies: {}'.format(', '.join(missing_deps)))
|
|
|
|
|
|
def _load_entry_from_hubconf(m, model):
|
|
if not isinstance(model, str):
|
|
raise ValueError('Invalid input: model should be a string of function name')
|
|
|
|
# Note that if a missing dependency is imported at top level of hubconf, it will
|
|
# throw before this function. It's a chicken and egg situation where we have to
|
|
# load hubconf to know what're the dependencies, but to import hubconf it requires
|
|
# a missing package. This is fine, Python will throw proper error message for users.
|
|
_check_dependencies(m)
|
|
|
|
func = _load_attr_from_module(m, model)
|
|
|
|
if func is None or not callable(func):
|
|
raise RuntimeError('Cannot find callable {} in hubconf'.format(model))
|
|
|
|
return func
|
|
|
|
|
|
def set_dir(d):
|
|
r"""
|
|
Optionally set hub_dir to a local dir to save downloaded models & weights.
|
|
|
|
If ``set_dir`` is not called, default path is ``$TORCH_HOME/hub`` where
|
|
environment variable ``$TORCH_HOME`` defaults to ``$XDG_CACHE_HOME/torch``.
|
|
``$XDG_CACHE_HOME`` follows the X Design Group specification of the Linux
|
|
filesytem layout, with a default value ``~/.cache`` if the environment
|
|
variable is not set.
|
|
|
|
|
|
Args:
|
|
d (string): path to a local folder to save downloaded models & weights.
|
|
"""
|
|
global hub_dir
|
|
hub_dir = d
|
|
|
|
|
|
def list(github, force_reload=False):
|
|
r"""
|
|
List all entrypoints available in `github` hubconf.
|
|
|
|
Args:
|
|
github (string): a string with format "repo_owner/repo_name[:tag_name]" with an optional
|
|
tag/branch. The default branch is `master` if not specified.
|
|
Example: 'pytorch/vision[:hub]'
|
|
force_reload (bool, optional): whether to discard the existing cache and force a fresh download.
|
|
Default is `False`.
|
|
Returns:
|
|
entrypoints: a list of available entrypoint names
|
|
|
|
Example:
|
|
>>> entrypoints = torch.hub.list('pytorch/vision', force_reload=True)
|
|
"""
|
|
# Setup hub_dir to save downloaded files
|
|
_setup_hubdir()
|
|
|
|
repo_dir = _get_cache_or_reload(github, force_reload, True)
|
|
|
|
sys.path.insert(0, repo_dir)
|
|
|
|
hub_module = import_module(MODULE_HUBCONF, repo_dir + '/' + MODULE_HUBCONF)
|
|
|
|
sys.path.remove(repo_dir)
|
|
|
|
# We take functions starts with '_' as internal helper functions
|
|
entrypoints = [f for f in dir(hub_module) if callable(getattr(hub_module, f)) and not f.startswith('_')]
|
|
|
|
return entrypoints
|
|
|
|
|
|
def help(github, model, force_reload=False):
|
|
r"""
|
|
Show the docstring of entrypoint `model`.
|
|
|
|
Args:
|
|
github (string): a string with format <repo_owner/repo_name[:tag_name]> with an optional
|
|
tag/branch. The default branch is `master` if not specified.
|
|
Example: 'pytorch/vision[:hub]'
|
|
model (string): a string of entrypoint name defined in repo's hubconf.py
|
|
force_reload (bool, optional): whether to discard the existing cache and force a fresh download.
|
|
Default is `False`.
|
|
Example:
|
|
>>> print(torch.hub.help('pytorch/vision', 'resnet18', force_reload=True))
|
|
"""
|
|
# Setup hub_dir to save downloaded files
|
|
_setup_hubdir()
|
|
|
|
repo_dir = _get_cache_or_reload(github, force_reload, True)
|
|
|
|
sys.path.insert(0, repo_dir)
|
|
|
|
hub_module = import_module(MODULE_HUBCONF, repo_dir + '/' + MODULE_HUBCONF)
|
|
|
|
sys.path.remove(repo_dir)
|
|
|
|
entry = _load_entry_from_hubconf(hub_module, model)
|
|
|
|
return entry.__doc__
|
|
|
|
|
|
# Ideally this should be `def load(github, model, *args, forece_reload=False, **kwargs):`,
|
|
# but Python2 complains syntax error for it. We have to skip force_reload in function
|
|
# signature here but detect it in kwargs instead.
|
|
# TODO: fix it after Python2 EOL
|
|
def load(github, model, *args, **kwargs):
|
|
r"""
|
|
Load a model from a github repo, with pretrained weights.
|
|
|
|
Args:
|
|
github (string): a string with format "repo_owner/repo_name[:tag_name]" with an optional
|
|
tag/branch. The default branch is `master` if not specified.
|
|
Example: 'pytorch/vision[:hub]'
|
|
model (string): a string of entrypoint name defined in repo's hubconf.py
|
|
*args (optional): the corresponding args for callable `model`.
|
|
force_reload (bool, optional): whether to force a fresh download of github repo unconditionally.
|
|
Default is `False`.
|
|
verbose (bool, optional): If False, mute messages about hitting local caches. Note that the message
|
|
about first download is cannot be muted.
|
|
Default is `True`.
|
|
**kwargs (optional): the corresponding kwargs for callable `model`.
|
|
|
|
Returns:
|
|
a single model with corresponding pretrained weights.
|
|
|
|
Example:
|
|
>>> model = torch.hub.load('pytorch/vision', 'resnet50', pretrained=True)
|
|
"""
|
|
# Setup hub_dir to save downloaded files
|
|
_setup_hubdir()
|
|
|
|
force_reload = kwargs.get('force_reload', False)
|
|
kwargs.pop('force_reload', None)
|
|
verbose = kwargs.get('verbose', True)
|
|
kwargs.pop('verbose', None)
|
|
|
|
repo_dir = _get_cache_or_reload(github, force_reload, verbose)
|
|
|
|
sys.path.insert(0, repo_dir)
|
|
|
|
hub_module = import_module(MODULE_HUBCONF, repo_dir + '/' + MODULE_HUBCONF)
|
|
|
|
entry = _load_entry_from_hubconf(hub_module, model)
|
|
|
|
model = entry(*args, **kwargs)
|
|
|
|
sys.path.remove(repo_dir)
|
|
|
|
return model
|
|
|
|
|
|
def download_url_to_file(url, dst, hash_prefix=None, progress=True):
|
|
r"""Download object at the given URL to a local path.
|
|
|
|
Args:
|
|
url (string): URL of the object to download
|
|
dst (string): Full path where object will be saved, e.g. `/tmp/temporary_file`
|
|
hash_prefix (string, optional): If not None, the SHA256 downloaded file should start with `hash_prefix`.
|
|
Default: None
|
|
progress (bool, optional): whether or not to display a progress bar to stderr
|
|
Default: True
|
|
|
|
Example:
|
|
>>> torch.hub.download_url_to_file('https://s3.amazonaws.com/pytorch/models/resnet18-5c106cde.pth', '/tmp/temporary_file')
|
|
|
|
"""
|
|
file_size = None
|
|
# We use a different API for python2 since urllib(2) doesn't recognize the CA
|
|
# certificates in older Python
|
|
u = urlopen(url)
|
|
meta = u.info()
|
|
if hasattr(meta, 'getheaders'):
|
|
content_length = meta.getheaders("Content-Length")
|
|
else:
|
|
content_length = meta.get_all("Content-Length")
|
|
if content_length is not None and len(content_length) > 0:
|
|
file_size = int(content_length[0])
|
|
|
|
# We deliberately save it in a temp file and move it after
|
|
# download is complete. This prevents a local working checkpoint
|
|
# being overriden by a broken download.
|
|
dst = os.path.expanduser(dst)
|
|
dst_dir = os.path.dirname(dst)
|
|
f = tempfile.NamedTemporaryFile(delete=False, dir=dst_dir)
|
|
|
|
try:
|
|
if hash_prefix is not None:
|
|
sha256 = hashlib.sha256()
|
|
with tqdm(total=file_size, disable=not progress,
|
|
unit='B', unit_scale=True, unit_divisor=1024) as pbar:
|
|
while True:
|
|
buffer = u.read(8192)
|
|
if len(buffer) == 0:
|
|
break
|
|
f.write(buffer)
|
|
if hash_prefix is not None:
|
|
sha256.update(buffer)
|
|
pbar.update(len(buffer))
|
|
|
|
f.close()
|
|
if hash_prefix is not None:
|
|
digest = sha256.hexdigest()
|
|
if digest[:len(hash_prefix)] != hash_prefix:
|
|
raise RuntimeError('invalid hash value (expected "{}", got "{}")'
|
|
.format(hash_prefix, digest))
|
|
shutil.move(f.name, dst)
|
|
finally:
|
|
f.close()
|
|
if os.path.exists(f.name):
|
|
os.remove(f.name)
|
|
|
|
def _download_url_to_file(url, dst, hash_prefix=None, progress=True):
|
|
warnings.warn('torch.hub._download_url_to_file has been renamed to\
|
|
torch.hub.download_url_to_file to be a public API,\
|
|
_download_url_to_file will be removed in after 1.3 release')
|
|
download_url_to_file(url, dst, hash_prefix, progress)
|
|
|
|
def load_state_dict_from_url(url, model_dir=None, map_location=None, progress=True, check_hash=False):
|
|
r"""Loads the Torch serialized object at the given URL.
|
|
|
|
If downloaded file is a zip file, it will be automatically
|
|
decompressed.
|
|
|
|
If the object is already present in `model_dir`, it's deserialized and
|
|
returned.
|
|
The default value of `model_dir` is ``$TORCH_HOME/checkpoints`` where
|
|
environment variable ``$TORCH_HOME`` defaults to ``$XDG_CACHE_HOME/torch``.
|
|
``$XDG_CACHE_HOME`` follows the X Design Group specification of the Linux
|
|
filesytem layout, with a default value ``~/.cache`` if not set.
|
|
|
|
Args:
|
|
url (string): URL of the object to download
|
|
model_dir (string, optional): directory in which to save the object
|
|
map_location (optional): a function or a dict specifying how to remap storage locations (see torch.load)
|
|
progress (bool, optional): whether or not to display a progress bar to stderr.
|
|
Default: True
|
|
check_hash(bool, optional): If True, the filename part of the URL should follow the naming convention
|
|
``filename-<sha256>.ext`` where ``<sha256>`` is the first eight or more
|
|
digits of the SHA256 hash of the contents of the file. The hash is used to
|
|
ensure unique names and to verify the contents of the file.
|
|
Default: False
|
|
|
|
Example:
|
|
>>> state_dict = torch.hub.load_state_dict_from_url('https://s3.amazonaws.com/pytorch/models/resnet18-5c106cde.pth')
|
|
|
|
"""
|
|
# Issue warning to move data if old env is set
|
|
if os.getenv('TORCH_MODEL_ZOO'):
|
|
warnings.warn('TORCH_MODEL_ZOO is deprecated, please use env TORCH_HOME instead')
|
|
|
|
if model_dir is None:
|
|
torch_home = _get_torch_home()
|
|
model_dir = os.path.join(torch_home, 'checkpoints')
|
|
|
|
try:
|
|
os.makedirs(model_dir)
|
|
except OSError as e:
|
|
if e.errno == errno.EEXIST:
|
|
# Directory already exists, ignore.
|
|
pass
|
|
else:
|
|
# Unexpected OSError, re-raise.
|
|
raise
|
|
|
|
parts = urlparse(url)
|
|
filename = os.path.basename(parts.path)
|
|
cached_file = os.path.join(model_dir, filename)
|
|
if not os.path.exists(cached_file):
|
|
sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
|
|
hash_prefix = HASH_REGEX.search(filename).group(1) if check_hash else None
|
|
download_url_to_file(url, cached_file, hash_prefix, progress=progress)
|
|
|
|
# Note: extractall() defaults to overwrite file if exists. No need to clean up beforehand.
|
|
# We deliberately don't handle tarfile here since our legacy serialization format was in tar.
|
|
# E.g. resnet18-5c106cde.pth which is widely used.
|
|
if zipfile.is_zipfile(cached_file):
|
|
with zipfile.ZipFile(cached_file) as cached_zipfile:
|
|
members = cached_zipfile.infolist()
|
|
if len(members) != 1:
|
|
raise RuntimeError('Only one file(not dir) is allowed in the zipfile')
|
|
cached_zipfile.extractall(model_dir)
|
|
extraced_name = members[0].filename
|
|
cached_file = os.path.join(model_dir, extraced_name)
|
|
|
|
return torch.load(cached_file, map_location=map_location)
|