pytorch/torch/csrc/jit/python/module_python.h
Peter Bell 2feb31cb26 Improve torch::jit::as_{module,object} performance (#84399)
This caches the import of `torch.jit.ScriptModule`,
`torch.ScriptObject` and `torch.jit.RecursiveScriptClass`. I measure
a ~0.8 us performance uplift locally when calling a `torch.ops`
function with a `ScriptObject` argument.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84399
Approved by: https://github.com/ezyang
2022-09-07 16:58:28 +00:00

38 lines
985 B
C++

#pragma once
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/utils/pybind.h>
namespace py = pybind11;
namespace torch {
namespace jit {
inline c10::optional<Module> as_module(py::handle obj) {
static py::handle ScriptModule =
py::module::import("torch.jit").attr("ScriptModule");
if (py::isinstance(obj, ScriptModule)) {
return py::cast<Module>(obj.attr("_c"));
}
return c10::nullopt;
}
inline c10::optional<Object> as_object(py::handle obj) {
static py::handle ScriptObject =
py::module::import("torch").attr("ScriptObject");
if (py::isinstance(obj, ScriptObject)) {
return py::cast<Object>(obj);
}
static py::handle RecursiveScriptClass =
py::module::import("torch.jit").attr("RecursiveScriptClass");
if (py::isinstance(obj, RecursiveScriptClass)) {
return py::cast<Object>(obj.attr("_c"));
}
return c10::nullopt;
}
} // namespace jit
} // namespace torch