mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Fixes #92831 This PR fixes a test failure of `TestTorch.test_from_buffer` on a big-endian machine. The root cause of this failure is that current `THPStorage_fromBuffer` does not perform endian handling correctly on a big-endian. In `THPStorage_fromBuffer`, the given buffer is stored as machine native-endian. Thus, if the specified byte order (e.g. `big`) is equal to machine native-endian, swapping elements should not be performed. However, in the current implementation, [`decode*BE()`](https://github.com/pytorch/pytorch/blob/master/torch/csrc/utils/byte_order.cpp#L72-L109) always swaps elements regardless of machine native-endian (i.e. these methods assume buffer is stored as little-endian). Thus, this PR uses the following approaches: - if the specified byte order (e.g. `big`) is equal to machine native-endian, call `decode*LE()` that does not swap elements by passing `torch::utils::THP_LITTLE_ENDIAN` to `THP_decode*Buffer()`. - if the specified byte order (e.g. `big`) is not equal to machine native-endian, call `decode*BE()` that always swap elements by passing `torch::utils::THP_BIG_ENDIAN` to `THP_decode*Buffer()`. After applying this PR to the master branch, I confirmed that the test passes on a big-endian machine. ``` % python test/test_torch.py TestTorch.test_from_buffer /home/ishizaki/PyTorch/master/test/test_torch.py:6367: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() self.assertEqual(torch.ByteStorage.from_buffer(a).tolist(), [1, 2, 3, 4]) ... /home/ishizaki/PyTorch/master/test/test_torch.py:6396: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() self.assertEqual(bytes.tolist(), [1, 2, 3, 4]) . ---------------------------------------------------------------------- Ran 1 test in 0.021s OK ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/92834 Approved by: https://github.com/ezyang
534 lines
17 KiB
C++
534 lines
17 KiB
C++
#include <torch/csrc/python_headers.h>
|
|
#ifdef _MSC_VER
|
|
#include <c10/util/win32-headers.h>
|
|
#endif
|
|
#include <structmember.h>
|
|
|
|
#include <c10/core/CPUAllocator.h>
|
|
#include <libshm.h>
|
|
#include <torch/csrc/CudaIPCTypes.h>
|
|
#include <torch/csrc/Device.h>
|
|
#include <torch/csrc/DynamicTypes.h>
|
|
#include <torch/csrc/THP.h>
|
|
#include <torch/csrc/autograd/utils/wrap_outputs.h>
|
|
#include <torch/csrc/copy_utils.h>
|
|
|
|
#include <c10/util/intrusive_ptr.h>
|
|
#include <fmt/format.h>
|
|
|
|
#include <torch/csrc/Storage.h>
|
|
#include <torch/csrc/StorageMethods.h>
|
|
|
|
#include <ATen/ATen.h>
|
|
#include <ATen/MapAllocator.h>
|
|
#include <torch/csrc/utils/pycfunction_helpers.h>
|
|
#include <torch/csrc/utils/python_arg_parser.h>
|
|
#include <torch/csrc/utils/python_numbers.h>
|
|
|
|
#ifdef USE_CUDA
|
|
#include <ATen/native/cuda/Resize.h>
|
|
#include <cuda_runtime.h>
|
|
#endif
|
|
|
|
#include <ATen/native/Resize.h>
|
|
|
|
#ifdef _MSC_VER
|
|
#define LSEEK _lseeki64
|
|
#else
|
|
#define LSEEK lseek
|
|
#endif
|
|
|
|
static PyObject* THPStorage_nbytes(PyObject* _self, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
auto self = (THPStorage*)_self;
|
|
return py::cast(self->cdata->sym_nbytes()).release().ptr();
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THPStorage_dataPtr(PyObject* _self, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
auto self = (THPStorage*)_self;
|
|
return PyLong_FromVoidPtr(self->cdata->data<uint8_t>());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THPStorage_copy_(
|
|
PyObject* self,
|
|
PyObject* args,
|
|
PyObject* kwargs) {
|
|
HANDLE_TH_ERRORS
|
|
|
|
at::Storage self_ = torch::createStorage(self);
|
|
|
|
static torch::PythonArgParser parser({
|
|
"copy_(Storage src, bool? non_blocking=None)",
|
|
});
|
|
torch::ParsedArgs<2> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
|
|
at::Storage src = r.storage(0);
|
|
bool non_blocking = r.toBoolOptional(1).value_or(false);
|
|
|
|
TORCH_CHECK(self_.nbytes() == src.nbytes(), "size does not match");
|
|
|
|
storage_copy(self_, src, non_blocking);
|
|
|
|
Py_INCREF(self);
|
|
return self;
|
|
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THPStorage_isPinned(PyObject* _self, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
#if defined(USE_CUDA)
|
|
auto self = (THPStorage*)_self;
|
|
return PyBool_FromLong(
|
|
at::globalContext().isPinnedPtr(self->cdata->data<uint8_t>()));
|
|
#else
|
|
Py_RETURN_FALSE;
|
|
#endif
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THPStorage_elementSize(PyObject* _self, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
return THPUtils_packInt64(sizeof(uint8_t));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THPStorage_new(PyObject* _self, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
auto self = (THPStorage*)_self;
|
|
c10::Allocator* allocator = self->cdata->allocator();
|
|
auto new_storage = c10::make_intrusive<at::StorageImpl>(
|
|
c10::StorageImpl::use_byte_size_t(),
|
|
0,
|
|
allocator,
|
|
/*resizable=*/true);
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
|
return THPStorage_New(std::move(new_storage));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THPStorage_resize_(PyObject* _self, PyObject* number_arg) {
|
|
HANDLE_TH_ERRORS
|
|
auto self = (THPStorage*)_self;
|
|
THPUtils_assert(
|
|
THPUtils_checkLong(number_arg),
|
|
"resize_ expects an int, "
|
|
"but got %s",
|
|
THPUtils_typename(number_arg));
|
|
int64_t newsize = THPUtils_unpackLong(number_arg);
|
|
c10::DeviceType device_type = self->cdata->device_type();
|
|
if (device_type == at::kCPU) {
|
|
at::native::resize_bytes_cpu(self->cdata, newsize);
|
|
#ifdef USE_CUDA
|
|
} else if (device_type == at::kCUDA) {
|
|
ptrdiff_t size_bytes_i = newsize;
|
|
TORCH_CHECK(
|
|
!c10::overflows<size_t>(size_bytes_i),
|
|
"Requested storage size (",
|
|
size_bytes_i,
|
|
") cannot be represented as a size_t");
|
|
const auto size_bytes = static_cast<size_t>(size_bytes_i);
|
|
at::native::resize_bytes_cuda(self->cdata, size_bytes);
|
|
#endif
|
|
} else {
|
|
TORCH_CHECK(
|
|
false,
|
|
"UntypedStorage.resize_: got unexpected device type ",
|
|
device_type);
|
|
}
|
|
Py_INCREF(self);
|
|
return (PyObject*)self;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THPStorage_fill_(PyObject* _self, PyObject* number_arg) {
|
|
HANDLE_TH_ERRORS
|
|
auto self = (THPStorage*)_self;
|
|
THPUtils_assert(
|
|
THPByteUtils_checkReal(number_arg),
|
|
"fill_ expects int, "
|
|
"but got %s",
|
|
THPUtils_typename(number_arg));
|
|
storage_fill(
|
|
at::unsafeStorageFromTH(self->cdata, /*retain=*/true),
|
|
THPByteUtils_unpackReal(number_arg));
|
|
Py_INCREF(self);
|
|
return (PyObject*)self;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THPStorage_fromBuffer(
|
|
PyObject* _unused,
|
|
PyObject* args,
|
|
PyObject* keywds) {
|
|
HANDLE_TH_ERRORS
|
|
PyObject* obj = nullptr;
|
|
const char* byte_order_str = nullptr;
|
|
Py_ssize_t count = -1, offset = 0;
|
|
PyObject* dtype_obj = nullptr;
|
|
c10::ScalarType scalar_type = at::kByte;
|
|
Py_buffer buffer = {};
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays,clang-diagnostic-writable-strings)
|
|
static char* kwlist[] = {
|
|
"buffer", "byte_order", "count", "offset", "dtype", nullptr};
|
|
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
|
const char* argtypes;
|
|
argtypes = "O|snnO";
|
|
|
|
if (!PyArg_ParseTupleAndKeywords(
|
|
args,
|
|
keywds,
|
|
argtypes,
|
|
kwlist,
|
|
&obj,
|
|
&byte_order_str,
|
|
&count,
|
|
&offset,
|
|
&dtype_obj)) {
|
|
return nullptr;
|
|
}
|
|
TORCH_CHECK(dtype_obj != nullptr, "argument 'dtype' cannot be None");
|
|
TORCH_CHECK(
|
|
THPDtype_Check(dtype_obj),
|
|
"argument 'dtype' must be of type torch.dtype");
|
|
auto dtype = reinterpret_cast<THPDtype*>(dtype_obj);
|
|
scalar_type = dtype->scalar_type;
|
|
|
|
TORCH_CHECK(
|
|
(scalar_type == at::kByte) || (scalar_type == at::kChar) ||
|
|
(byte_order_str != nullptr),
|
|
"function missing required argument 'byte_order' (pos 2)");
|
|
size_t element_size = c10::elementSize(scalar_type);
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
|
bool do_byte_swap;
|
|
if (scalar_type != at::kByte && scalar_type != at::kChar) {
|
|
if (strcmp(byte_order_str, "native") == 0) {
|
|
do_byte_swap = false;
|
|
} else if (strcmp(byte_order_str, "big") == 0) {
|
|
do_byte_swap =
|
|
(torch::utils::THP_LITTLE_ENDIAN ==
|
|
torch::utils::THP_nativeByteOrder());
|
|
} else if (strcmp(byte_order_str, "little") == 0) {
|
|
do_byte_swap =
|
|
(torch::utils::THP_BIG_ENDIAN == torch::utils::THP_nativeByteOrder());
|
|
} else {
|
|
PyErr_Format(
|
|
PyExc_ValueError,
|
|
"invalid byte_order '%s' (expected 'big', 'little', or 'native')",
|
|
byte_order_str);
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
if (PyObject_GetBuffer(obj, &buffer, PyBUF_SIMPLE) < 0)
|
|
return nullptr;
|
|
|
|
if (offset < 0 || offset > buffer.len) {
|
|
PyErr_SetString(
|
|
PyExc_ValueError,
|
|
fmt::format(
|
|
"offset must be non-negative and no greater than buffer length ({}) , but got {}",
|
|
offset,
|
|
buffer.len));
|
|
PyBuffer_Release(&buffer);
|
|
return nullptr;
|
|
}
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
|
size_t size_bytes;
|
|
if (count < 0) {
|
|
if ((buffer.len - offset) % element_size != 0) {
|
|
PyErr_SetString(
|
|
PyExc_ValueError,
|
|
fmt::format(
|
|
"buffer size ({}) must be a multiple of element size ({})",
|
|
buffer.len,
|
|
element_size));
|
|
PyBuffer_Release(&buffer);
|
|
return nullptr;
|
|
}
|
|
size_bytes = buffer.len - offset;
|
|
count = size_bytes / element_size;
|
|
} else {
|
|
size_bytes = count * element_size;
|
|
}
|
|
|
|
if (offset + (count * (Py_ssize_t)element_size) > buffer.len) {
|
|
PyErr_SetString(
|
|
PyExc_ValueError,
|
|
fmt::format(
|
|
"buffer has only {} elements after offset {}, but specified a size of {}",
|
|
buffer.len - offset,
|
|
offset,
|
|
count));
|
|
PyBuffer_Release(&buffer);
|
|
return nullptr;
|
|
}
|
|
|
|
uint8_t* src = (uint8_t*)buffer.buf;
|
|
auto storage = c10::make_intrusive<at::StorageImpl>(
|
|
c10::StorageImpl::use_byte_size_t(),
|
|
size_bytes,
|
|
c10::GetDefaultCPUAllocator(),
|
|
/*resizable=*/true);
|
|
|
|
if (scalar_type == at::kByte || scalar_type == at::kChar) {
|
|
memcpy(storage->data(), src + offset, count);
|
|
} else if (scalar_type == at::kBool) {
|
|
// Because of ASAN checks, that are failing whenever
|
|
// we are trying to get a value which is not 0 or 1, we have to manually
|
|
// convert original values to boolean ones.
|
|
torch::utils::THP_decodeBoolBuffer(
|
|
storage->data<bool>(), src + offset, do_byte_swap, count);
|
|
} else if (scalar_type == at::kShort) {
|
|
torch::utils::THP_decodeInt16Buffer(
|
|
storage->data<int16_t>(), src + offset, do_byte_swap, count);
|
|
} else if (scalar_type == at::kInt) {
|
|
torch::utils::THP_decodeInt32Buffer(
|
|
storage->data<int32_t>(), src + offset, do_byte_swap, count);
|
|
} else if (scalar_type == at::kLong) {
|
|
torch::utils::THP_decodeInt64Buffer(
|
|
storage->data<int64_t>(), src + offset, do_byte_swap, count);
|
|
} else if (scalar_type == at::kHalf) {
|
|
torch::utils::THP_decodeHalfBuffer(
|
|
storage->data<c10::Half>(), src + offset, do_byte_swap, count);
|
|
} else if (scalar_type == at::kBFloat16) {
|
|
torch::utils::THP_decodeBFloat16Buffer(
|
|
storage->data<c10::BFloat16>(), src + offset, do_byte_swap, count);
|
|
} else if (scalar_type == at::kFloat) {
|
|
torch::utils::THP_decodeFloatBuffer(
|
|
storage->data<float>(), src + offset, do_byte_swap, count);
|
|
} else if (scalar_type == at::kDouble) {
|
|
torch::utils::THP_decodeDoubleBuffer(
|
|
storage->data<double>(), src + offset, do_byte_swap, count);
|
|
} else if (scalar_type == at::kComplexFloat) {
|
|
torch::utils::THP_decodeComplexFloatBuffer(
|
|
storage->data<c10::complex<float>>(),
|
|
src + offset,
|
|
do_byte_swap,
|
|
count);
|
|
} else if (scalar_type == at::kComplexDouble) {
|
|
torch::utils::THP_decodeComplexDoubleBuffer(
|
|
storage->data<c10::complex<double>>(),
|
|
src + offset,
|
|
do_byte_swap,
|
|
count);
|
|
} else {
|
|
TORCH_CHECK(false, "Unknown type: ", scalar_type);
|
|
}
|
|
|
|
PyBuffer_Release(&buffer);
|
|
return (PyObject*)THPStorage_New(storage);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THPStorage_fromFile(
|
|
PyObject* _unused,
|
|
PyObject* args,
|
|
PyObject* keywds) {
|
|
HANDLE_TH_ERRORS
|
|
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
|
const char* filename;
|
|
Py_ssize_t nbytes = 0;
|
|
int shared = 0;
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays,clang-diagnostic-writable-strings)
|
|
static char* kwlist[] = {"filename", "shared", "nbytes", nullptr};
|
|
if (!PyArg_ParseTupleAndKeywords(
|
|
args, keywds, "s|in", kwlist, &filename, &shared, &nbytes)) {
|
|
return nullptr;
|
|
}
|
|
if (shared)
|
|
shared = at::ALLOCATOR_MAPPED_SHARED;
|
|
|
|
size_t actual_nbytes = -1;
|
|
auto storage = c10::make_intrusive<at::StorageImpl>(
|
|
c10::StorageImpl::use_byte_size_t(),
|
|
nbytes,
|
|
at::MapAllocator::makeDataPtr(filename, shared, nbytes, &actual_nbytes),
|
|
/*allocator=*/nullptr,
|
|
/*resizable=*/false);
|
|
|
|
if (nbytes <= 0) {
|
|
storage->set_nbytes(actual_nbytes);
|
|
}
|
|
|
|
return (PyObject*)THPStorage_New(std::move(storage));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THPStorage_writeFile(PyObject* _self, PyObject* args) {
|
|
HANDLE_TH_ERRORS
|
|
auto self = (THPStorage*)_self;
|
|
PyObject* file = PyTuple_GetItem(args, 0);
|
|
bool is_real_file = PyTuple_GetItem(args, 1) == Py_True;
|
|
bool save_size = PyTuple_GetItem(args, 2) == Py_True;
|
|
PyObject* element_size_obj = PyTuple_GET_ITEM(args, 3);
|
|
|
|
THPUtils_assert(
|
|
element_size_obj != Py_None, "_write_file: need to specify element size");
|
|
uint64_t element_size = THPUtils_unpackUInt64(element_size_obj);
|
|
|
|
if (!is_real_file) {
|
|
THPStorage_writeFileRaw<PyObject*>(
|
|
self->cdata, file, save_size, element_size);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
int fd = PyObject_AsFileDescriptor(file);
|
|
THPUtils_assert(
|
|
fd != -1,
|
|
"_write_file couldn't retrieve a file descriptor "
|
|
"from given object");
|
|
THPStorage_writeFileRaw(self->cdata, fd, save_size, element_size);
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THPStorage_newWithFile(PyObject* _unused, PyObject* args) {
|
|
HANDLE_TH_ERRORS
|
|
TORCH_CHECK(
|
|
PyTuple_Size(args) == 2, "_new_with_file takes exactly two arguments");
|
|
int fd = PyObject_AsFileDescriptor(PyTuple_GetItem(args, 0));
|
|
THPUtils_assert(
|
|
fd != -1,
|
|
"_new_with_file couldn't retrieve a file "
|
|
"descriptor from given object");
|
|
PyObject* element_size_obj = PyTuple_GET_ITEM(args, 1);
|
|
THPUtils_assert(
|
|
element_size_obj != Py_None,
|
|
"_new_with_file: need to specify element size");
|
|
uint64_t element_size = THPUtils_unpackUInt64(element_size_obj);
|
|
|
|
auto storage = THPStorage_readFileRaw<int>(fd, {}, element_size);
|
|
if (!storage.defined())
|
|
return nullptr;
|
|
return THPStorage_New(std::move(storage));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THPStorage_setFromFile(PyObject* _self, PyObject* args) {
|
|
HANDLE_TH_ERRORS
|
|
auto self = (THPStorage*)_self;
|
|
PyObject* file = PyTuple_GET_ITEM(args, 0);
|
|
PyObject* offset = PyTuple_GET_ITEM(args, 1);
|
|
bool is_real_file = PyTuple_GET_ITEM(args, 2) == Py_True;
|
|
|
|
PyObject* element_size_obj = PyTuple_GET_ITEM(args, 3);
|
|
|
|
THPUtils_assert(
|
|
element_size_obj != Py_None,
|
|
"_set_from_file: need to specify element size");
|
|
uint64_t element_size = THPUtils_unpackUInt64(element_size_obj);
|
|
|
|
if (!is_real_file) {
|
|
// offset can be implemented with a call to the Python object's seek()
|
|
// but it is currently unnecessary to support this.
|
|
THPUtils_assert(
|
|
offset == Py_None,
|
|
"_set_from_file: offset is NYI for filelike objects");
|
|
|
|
auto self_storage =
|
|
c10::intrusive_ptr<c10::StorageImpl>::reclaim_copy(self->cdata);
|
|
auto storage = THPStorage_readFileRaw<PyObject*>(
|
|
file, std::move(self_storage), element_size);
|
|
if (!storage.defined()) {
|
|
return nullptr;
|
|
}
|
|
Py_INCREF(self);
|
|
return (PyObject*)self;
|
|
}
|
|
|
|
// file is backed by a fd
|
|
const int fd = PyObject_AsFileDescriptor(file);
|
|
const auto fd_original_pos = LSEEK(fd, 0, SEEK_CUR);
|
|
if (offset != Py_None) {
|
|
LSEEK(fd, THPUtils_unpackLong(offset), SEEK_SET);
|
|
}
|
|
THPUtils_assert(
|
|
fd != -1,
|
|
"_set_from_file couldn't retrieve a file "
|
|
"descriptor from given object");
|
|
auto self_storage =
|
|
c10::intrusive_ptr<c10::StorageImpl>::reclaim_copy(self->cdata);
|
|
auto storage = THPStorage_readFileRaw<int>(fd, self_storage, element_size);
|
|
if (!storage.defined())
|
|
return nullptr;
|
|
Py_INCREF(self);
|
|
|
|
// the file descriptor is returned to original position and
|
|
// the file handle at python call-site needs updating to the
|
|
// advanced position
|
|
const auto fd_current_pos = LSEEK(fd, 0, SEEK_CUR);
|
|
LSEEK(fd, fd_original_pos, SEEK_SET);
|
|
const auto seek_return =
|
|
PyObject_CallMethod(file, "seek", "Li", (long long)fd_current_pos, 0);
|
|
if (seek_return == nullptr) {
|
|
return nullptr;
|
|
}
|
|
Py_DECREF(seek_return);
|
|
|
|
return (PyObject*)self;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THPStorage__setCdata(PyObject* _self, PyObject* new_cdata) {
|
|
HANDLE_TH_ERRORS
|
|
auto self = (THPStorage*)_self;
|
|
THPUtils_assert(
|
|
THPUtils_checkLong(new_cdata),
|
|
"given an invalid argument to "
|
|
"_set_cdata - expected an int or long, but got %s",
|
|
THPUtils_typename(new_cdata));
|
|
c10::StorageImpl* ptr = (c10::StorageImpl*)PyLong_AsVoidPtr(new_cdata);
|
|
if (ptr) {
|
|
c10::raw::intrusive_ptr::incref(ptr);
|
|
}
|
|
if (self->cdata) {
|
|
c10::raw::intrusive_ptr::decref(self->cdata);
|
|
}
|
|
self->cdata = ptr;
|
|
Py_INCREF(self);
|
|
return (PyObject*)self;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables)
|
|
static PyMethodDef THPStorage_methods[] = {
|
|
{"copy_",
|
|
castPyCFunctionWithKeywords(THPStorage_copy_),
|
|
METH_VARARGS | METH_KEYWORDS,
|
|
nullptr},
|
|
{"element_size", THPStorage_elementSize, METH_NOARGS, nullptr},
|
|
{"fill_", THPStorage_fill_, METH_O, nullptr},
|
|
{"new", THPStorage_new, METH_NOARGS, nullptr},
|
|
{"resize_", THPStorage_resize_, METH_O, nullptr},
|
|
{"nbytes", THPStorage_nbytes, METH_NOARGS, nullptr},
|
|
{"data_ptr", THPStorage_dataPtr, METH_NOARGS, nullptr},
|
|
{"is_pinned", THPStorage_isPinned, METH_NOARGS, nullptr},
|
|
{"_write_file", THPStorage_writeFile, METH_VARARGS, nullptr},
|
|
{"_new_with_file",
|
|
THPStorage_newWithFile,
|
|
METH_VARARGS | METH_STATIC,
|
|
nullptr},
|
|
{"_set_from_file", THPStorage_setFromFile, METH_VARARGS, nullptr},
|
|
{"from_buffer",
|
|
castPyCFunctionWithKeywords(THPStorage_fromBuffer),
|
|
METH_VARARGS | METH_KEYWORDS | METH_STATIC,
|
|
nullptr},
|
|
{"from_file",
|
|
castPyCFunctionWithKeywords(THPStorage_fromFile),
|
|
METH_VARARGS | METH_KEYWORDS | METH_STATIC,
|
|
nullptr},
|
|
{"_set_cdata", THPStorage__setCdata, METH_O, nullptr},
|
|
{nullptr}};
|
|
|
|
PyMethodDef* THPStorage_getMethods() {
|
|
return THPStorage_methods;
|
|
}
|