mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/33243 If a file does not exist in an archive, PyTorchStreamReader throws an exception. However, when PyTorchStreamReader is destructed another exception is thrown while processing the first exception. As a result of this double exception there is SIGABORT. Thanks dreiss for catching this bug and suggesting the fix. It happened when he used _load_for_mobile to load a torch script file without bytecode session. A unittest is added to test this case. Test Plan: Imported from OSS Differential Revision: D19859205 Pulled By: iseeyuan fbshipit-source-id: 8f96b6256f1a1f933fce1c256d64604c7e9269e4
195 lines
5.0 KiB
C++
195 lines
5.0 KiB
C++
#include <test/cpp/jit/test_base.h>
|
|
#include <torch/csrc/jit/script/module.h>
|
|
#include <torch/csrc/autograd/generated/variable_factories.h>
|
|
#include <torch/csrc/jit/mobile/import.h>
|
|
#include <torch/csrc/jit/mobile/module.h>
|
|
#include <torch/csrc/jit/import.h>
|
|
|
|
// Tests go in torch::jit
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
void testLiteInterpreterUpsampleNearest2d() {
|
|
script::Module m("m");
|
|
m.define(R"(
|
|
def forward(self, input: Tensor, scale:float):
|
|
return torch.upsample_nearest2d(input, [1, 1], float(scale), float(scale))
|
|
)");
|
|
|
|
std::vector<IValue> inputs;
|
|
inputs.emplace_back(torch::rand({1, 3, 128, 128}));
|
|
inputs.emplace_back(at::Scalar(2.0));
|
|
auto ref = m.forward(inputs);
|
|
|
|
std::stringstream ss;
|
|
m._save_for_mobile(ss);
|
|
mobile::Module bc = _load_for_mobile(ss);
|
|
IValue res;
|
|
res = bc.forward(inputs);
|
|
|
|
auto resd = res.toTensor();
|
|
auto refd = ref.toTensor();
|
|
ASSERT_TRUE(resd.equal(refd));
|
|
}
|
|
|
|
void testLiteInterpreterAdd() {
|
|
script::Module m("m");
|
|
m.register_parameter("foo", torch::ones({}), false);
|
|
// TODO: support default param val, which was pushed in
|
|
// function schema's checkAndNormalizeInputs()
|
|
// m.define(R"(
|
|
// def add_it(self, x, b : int = 4):
|
|
// return self.foo + x + b
|
|
// )");
|
|
m.define(R"(
|
|
def add_it(self, x):
|
|
b = 4
|
|
return self.foo + x + b
|
|
)");
|
|
|
|
std::vector<IValue> inputs;
|
|
auto minput = 5 * torch::ones({});
|
|
inputs.emplace_back(minput);
|
|
auto ref = m.run_method("add_it", minput);
|
|
|
|
std::stringstream ss;
|
|
m._save_for_mobile(ss);
|
|
mobile::Module bc = _load_for_mobile(ss);
|
|
IValue res;
|
|
for (int i = 0; i < 3; ++i) {
|
|
auto bcinputs = inputs;
|
|
res = bc.run_method("add_it", bcinputs);
|
|
}
|
|
|
|
auto resd = res.toTensor().item<float>();
|
|
auto refd = ref.toTensor().item<float>();
|
|
AT_ASSERT(resd == refd);
|
|
}
|
|
|
|
void testLiteInterpreterConv() {
|
|
auto s = std::getenv("PYTORCH_TEST_WITH_TSAN");
|
|
if (s && strcmp(s, "1") == 0)
|
|
return;
|
|
|
|
std::vector<torch::jit::IValue> inputs;
|
|
|
|
script::Module m("m");
|
|
m.register_parameter("weight", torch::ones({20, 1, 5, 5}), false);
|
|
m.register_parameter("bias", torch::ones({20}), false);
|
|
m.define(R"(
|
|
def forward(self, input):
|
|
return torch._convolution(input, self.weight, self.bias, [1, 1], [0, 0], [1, 1], False, [0, 0], 1, False, False, True)
|
|
)");
|
|
|
|
inputs.push_back(torch::ones({1, 1, 28, 28}));
|
|
|
|
auto outputref = m.forward(inputs).toTensor();
|
|
|
|
std::stringstream ss;
|
|
m._save_for_mobile(ss);
|
|
mobile::Module bc = _load_for_mobile(ss);
|
|
IValue res;
|
|
for (int i = 0; i < 3; ++i) {
|
|
res = bc.run_method("forward", inputs);
|
|
}
|
|
auto output = res.toTensor();
|
|
AT_ASSERT(outputref.dim() == output.dim());
|
|
AT_ASSERT(outputref[0][0][0][0].item<int>() == output[0][0][0][0].item<int>());
|
|
}
|
|
|
|
void testLiteInterpreterInline() {
|
|
script::Module m("m");
|
|
m.define(R"JIT(
|
|
def foo1(self, x):
|
|
return x + 1
|
|
|
|
def foo2(self, x):
|
|
return self.foo1(x) + 2
|
|
|
|
def foo3(self, x):
|
|
return self.foo2(x) + 3
|
|
)JIT");
|
|
std::stringstream ss;
|
|
m._save_for_mobile(ss);
|
|
mobile::Module bc = _load_for_mobile(ss);
|
|
std::vector<torch::jit::IValue> inputs({torch::ones({})});
|
|
auto output = bc.run_method("foo3", inputs);
|
|
AT_ASSERT(output.toTensor().item<float>() == 7.0);
|
|
}
|
|
|
|
void testLiteInterpreterTuple() {
|
|
script::Module m("m");
|
|
m.define(R"JIT(
|
|
def foo(self, x):
|
|
return (1, 2, x + 3)
|
|
|
|
def forward(self, x):
|
|
tuple = self.foo(x)
|
|
return tuple
|
|
)JIT");
|
|
std::stringstream ss;
|
|
m._save_for_mobile(ss);
|
|
mobile::Module bc = _load_for_mobile(ss);
|
|
std::vector<torch::jit::IValue> inputs({torch::ones({})});
|
|
auto output = bc.run_method("forward", inputs);
|
|
AT_ASSERT(output.toTuple()->elements()[1].toInt() == 2);
|
|
}
|
|
|
|
void testLiteInterpreterPrimOverload() {
|
|
script::Module m("m");
|
|
m.define(R"JIT(
|
|
def forward(self, x):
|
|
result = [1, 2]
|
|
result.append(3)
|
|
return result
|
|
)JIT");
|
|
std::stringstream ss;
|
|
m._save_for_mobile(ss);
|
|
mobile::Module bc = _load_for_mobile(ss);
|
|
std::vector<torch::jit::IValue> inputs({torch::ones({})});
|
|
auto output = bc.run_method("forward", inputs);
|
|
AT_ASSERT(output.toIntList()[2] == 3);
|
|
}
|
|
|
|
void testLiteInterpreterPrim() {
|
|
script::Module m("m");
|
|
m.define(R"JIT(
|
|
def forward(self, x):
|
|
return int(x)
|
|
)JIT");
|
|
|
|
std::vector<IValue> inputs;
|
|
auto minput = 3.5 * torch::ones({});
|
|
inputs.emplace_back(minput);
|
|
auto ref = m.run_method("forward", minput);
|
|
|
|
std::stringstream ss;
|
|
m._save_for_mobile(ss);
|
|
mobile::Module bc = _load_for_mobile(ss);
|
|
IValue res;
|
|
for (int i = 0; i < 3; ++i) {
|
|
auto bcinputs = inputs;
|
|
res = bc.run_method("forward", bcinputs);
|
|
}
|
|
|
|
auto resi = res.toInt();
|
|
auto refi = ref.toInt();
|
|
AT_ASSERT(resi == refi);
|
|
}
|
|
|
|
void testLiteInterpreterLoadOrigJit() {
|
|
script::Module m("m");
|
|
m.register_parameter("foo", torch::ones({}), false);
|
|
m.define(R"(
|
|
def forward(self, x):
|
|
b = 4
|
|
return self.foo + x + b
|
|
)");
|
|
std::stringstream ss;
|
|
m.save(ss);
|
|
ASSERT_THROWS_WITH(_load_for_mobile(ss), "file not found");
|
|
}
|
|
|
|
} // namespace jit
|
|
} // namespace torch
|