pytorch/torch/csrc/jit/import_source.cpp
Zachary DeVito 0e3389dced Fix circular deps in loading (#26758)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26758

This PR changes the order in which we import classes and functions so
that is is no longer necessary for them to defined in order in a file,
or for there to be proper import statements in the exported file.

Actually importing a function/class now is driven by the need to resolve
the entity during unpickling, type resolution, or value resolution.

While this should allow significant simplification to the code that
serializes classes, this work has not been done yet in order to avoid
inevitable forward compat issues in the transition period.

Notes:
* Individual functions have been replaced with a SourceImporter object
  that exposes a resolveType method. This method loads the type if
  it has not been loaded yet, potentially parsing  (but not loading)
  the file it exists in if that file hasn't been parsed yet.
* Some legacy functionality needed to be added as a method to this object
  since the old format still used some of this logic for class resolution.

Test Plan: Imported from OSS

Differential Revision: D17558989

Pulled By: zdevito

fbshipit-source-id: 7eae3470bcbd388c4de463e3462d527776ed46c6
2019-09-26 11:39:16 -07:00

508 lines
18 KiB
C++

#include "import_source.h"
#include <ATen/core/qualified_name.h>
#include <torch/csrc/jit/export.h>
#include <torch/csrc/jit/script/parser.h>
#include <torch/csrc/jit/script/resolver.h>
#include <torch/csrc/jit/script/script_type_parser.h>
namespace torch {
namespace jit {
namespace script {
struct OpsValue : public SugaredValue {
OpsValue(size_t version) : version_(version) {}
std::string kind() const override {
return "ops";
}
std::shared_ptr<SugaredValue> attr(
const SourceRange& loc,
Function& m,
const std::string& field) override {
return std::make_shared<BuiltinModule>(field, version_);
}
size_t version_;
};
struct ConstantValue : public SugaredValue {
ConstantValue(IValue value) : value_(std::move(value)) {}
IValue value_;
std::string kind() const override {
return "constant";
}
Value* asValue(const SourceRange& loc, Function& m) override {
return m.graph()->insertConstant(value_);
}
};
// Represents nested namespaces, like `foo.bar.Baz`.
// Right now these namespaces can only contain other namespaces or NamedTypes
struct TORCH_API ClassNamespaceValue : public SugaredValue {
/**
* @param name The fully qualified path, which can resolve either to a
* namespace or a NamedType
* @param si The source importer that searches for and loads
* classes/functions.
*/
explicit ClassNamespaceValue(
c10::QualifiedName name,
std::shared_ptr<SourceImporterImpl> si)
: basename_(std::move(name)), si_(std::move(si)) {}
std::shared_ptr<SugaredValue> attr(
const SourceRange& loc,
Function& m,
const std::string& name) override;
std::string kind() const override {
return "Class Namespace";
}
private:
c10::QualifiedName basename_;
std::shared_ptr<SourceImporterImpl> si_;
};
// This value maps attributes CONSTANTS.c0 CONSTANTS.c1 to entries
// in the 'constants' vector. This table is will be stored in a container format
// and given to the import_method when restoring the code.
struct ConstantTableValue : public SugaredValue {
ConstantTableValue(const std::vector<at::Tensor>* constants)
: constants_(constants) {}
std::string kind() const override {
return "CONSTANTS";
}
// select an attribute on it, e.g. `this.field`
std::shared_ptr<SugaredValue> attr(
const SourceRange& loc,
Function& m,
const std::string& field) override {
const char* field_s = field.c_str();
char* end;
int64_t offset = std::strtoll(field_s + 1, &end, 10);
if (field.size() < 2 || *end != 0)
throw ErrorReport(loc) << "invalid constant specifier: " << field;
if (offset < 0 || size_t(offset) >= constants_->size()) {
throw ErrorReport(loc) << "constant index " << offset
<< " is out of bounds (constant table has "
<< constants_->size() << " entries)";
}
Value* value = m.graph()->insertConstant(constants_->at(offset), loc);
// specializing tensor type on compilation messes up typing relations
value->setType(unshapedType(value->type()));
return std::make_shared<SimpleValue>(value);
}
private:
const std::vector<at::Tensor>* constants_;
};
struct SourceImporterImpl : public Resolver,
std::enable_shared_from_this<SourceImporterImpl> {
SourceImporterImpl(
const std::shared_ptr<CompilationUnit> cu,
const std::vector<at::Tensor>* tensor_table,
SourceLoader source_loader)
: cu_(cu), source_loader_(std::move(source_loader)) {
env_ = {
// Constants present in the model. Used to resolve "CONSTANTS.n" to the
// actual value
{"CONSTANTS", std::make_shared<ConstantTableValue>(tensor_table)},
{"fork", std::make_shared<ForkValue>()},
{"annotate", std::make_shared<AnnotateValue>()},
{"uninitialized", std::make_shared<UninitializedValue>()},
{"inf",
std::make_shared<ConstantValue>(
std::numeric_limits<double>::infinity())},
{"nan",
std::make_shared<ConstantValue>(
std::numeric_limits<double>::quiet_NaN())},
};
}
TypePtr findNamedType(const QualifiedName& name) {
parseSourceIfNeeded(name.prefix());
auto it = to_be_defined_.find(name);
if (it != to_be_defined_.end() && it->second->kind() == TK_CLASS_DEF) {
ClassDef cd(it->second);
to_be_defined_.erase(it);
importNamedType(name.prefix(), cd);
}
return cu_->get_type(name);
}
Function* findFunction(const QualifiedName& name) {
parseSourceIfNeeded(name.prefix());
auto it = to_be_defined_.find(name);
if (it != to_be_defined_.end() && it->second->kind() == TK_DEF) {
Def d(it->second);
to_be_defined_.erase(it);
importFunction(name.prefix(), d);
}
return cu_->find_function(name);
}
void parseSourceIfNeeded(const std::string& qualifier) {
// qualifier may be blank, for instance checking if __torch__ is a class.
if (qualifier == "" || loaded_sources_.count(qualifier)) {
return;
}
loaded_sources_.insert(qualifier);
std::shared_ptr<Source> src = source_loader_(qualifier);
// The importer, when looking for classes/functions doesn't know if 'foo'
// contains definitions or if it is a prefix of 'foo.bar', we only figure it
// out by testing if `foo.py` exists in the source loader. If it doesn't
// then there is nothing to load here
if (!src) {
return;
}
Parser p(src);
parseAndCheckVersionNumber(p.lexer());
auto& L = p.lexer();
while (L.cur().kind != TK_EOF) {
parseImports(L);
auto tk = L.cur();
auto kind = tk.kind;
switch (kind) {
case TK_CLASS_DEF: {
auto parsed_treeref = ClassDef(p.parseClass());
to_be_defined_[QualifiedName(
qualifier, parsed_treeref.name().name())] = parsed_treeref;
} break;
case TK_DEF: {
auto parsed_treeref = Def(p.parseFunction(/*is_method=*/false));
to_be_defined_[QualifiedName(
qualifier, parsed_treeref.name().name())] = parsed_treeref;
} break;
default:
throw ErrorReport(L.cur().range)
<< "Unexpected token in code import: " << kindToString(kind);
}
}
}
void LEGACY_import_methods(
const script::Module& mod,
const std::shared_ptr<Source>& src) {
auto self = SimpleSelf(mod.type());
c10::QualifiedName prefix = mod.name();
Parser p(src);
parseAndCheckVersionNumber(p.lexer());
parseImports(p.lexer());
std::vector<Def> definitions;
std::vector<ResolverPtr> resolvers;
while (p.lexer().cur().kind != TK_EOF) {
auto def = Def(p.parseFunction(/*is_method=*/true));
definitions.emplace_back(def);
resolvers.emplace_back(shared_from_this());
}
cu_->define(prefix, definitions, resolvers, &self);
}
std::shared_ptr<SugaredValue> resolveValue(
const std::string& name,
Function& m,
const SourceRange& loc) override {
auto it = env_.find(name);
if (it != env_.end()) {
return it->second;
}
if (name == "__torch__") {
return std::make_shared<ClassNamespaceValue>(
c10::QualifiedName(name), shared_from_this());
}
return nullptr;
}
TypePtr resolveType(const std::string& name, const SourceRange& loc)
override {
return findNamedType(QualifiedName(name));
}
private:
void importFunction(const std::string& qualifier, const Def& def) {
std::vector<Def> definitions{def};
std::vector<ResolverPtr> resolvers{shared_from_this()};
cu_->define(qualifier, definitions, resolvers, nullptr);
}
void importNamedType(
const std::string& qualifier,
const ClassDef& class_def) {
const auto qualified_name =
QualifiedName(QualifiedName(qualifier), class_def.name().name());
if (!class_def.superclass().present()) {
return importClass(qualified_name, class_def, /*is_module=*/false);
}
const auto& superclass_name =
Var(class_def.superclass().get()).name().name();
if (superclass_name == "Module") {
importClass(qualified_name, class_def, /*is_module=*/true);
} else if (superclass_name == "NamedTuple") {
// NamedTuples have special rules (since they are TupleTypes and not
// ClassTypes)
return importNamedTuple(qualified_name, class_def);
} else if (superclass_name == "Interface") {
cu_->define_interface(qualified_name, class_def, shared_from_this());
} else {
throw ErrorReport(class_def.range())
<< "Torchscript does not support class inheritance.";
}
}
void importClass(
const QualifiedName& qualified_classname,
const ClassDef& class_def,
bool is_module) {
auto class_type = ClassType::create(
c10::QualifiedName(qualified_classname), cu_, is_module);
std::vector<Def> methods;
std::vector<ResolverPtr> resolvers;
std::vector<Assign> attributes;
// Module-specific: which attrs are parameters?
std::unordered_set<std::string> parameter_names;
// Process statements, splitting things into attribute and method
// definitions.
for (const auto& statement : class_def.body()) {
switch (statement.kind()) {
case TK_ASSIGN: {
const auto assign = Assign(statement);
switch (assign.lhs().kind()) {
case TK_VAR: {
const auto name = Var(assign.lhs()).name().name();
if (name == "__parameters__") {
// Populate the module parameter list. This is a field that
// looks like:
// __parameters__ = ["foo", "bar", "baz"]
// which tells us which attributes are module parameters.
TORCH_INTERNAL_ASSERT(
is_module,
"Assignments in class body only "
"supported on modules right now");
const auto param_list =
ListLiteral(assign.rhs().get()).inputs();
for (const auto& param : param_list) {
parameter_names.insert(StringLiteral(param).text());
}
} else if (name == "__annotations__") {
// This is to initialize the annotations dict, just ignore.
continue;
} else {
// This is a regular attribute assignment, of the form:
// foo : Tensor
if (assign.rhs().present()) {
throw ErrorReport(assign.rhs())
<< "Unexpected right-hand found in assignment in class body. "
"This is not yet supported.";
}
attributes.push_back(assign);
}
} break;
case TK_SUBSCRIPT: {
// This is a special attribute assignment where the attribute
// is not a valid python, identifier. Looks like:
// __annotations__["0"] = Tensor
const auto lhs = Subscript(assign.lhs());
TORCH_INTERNAL_ASSERT(
Var(lhs.value()).name().name() == "__annotations__");
TORCH_INTERNAL_ASSERT(lhs.subscript_exprs().size() == 1);
attributes.push_back(assign);
} break;
default: {
TORCH_INTERNAL_ASSERT(
false,
"Unexpected statement kind in module metadata: ",
kindToString(statement.kind()));
}
}
} break;
case TK_DEF: {
methods.emplace_back(Def(statement));
resolvers.push_back(shared_from_this());
} break;
default: {
TORCH_INTERNAL_ASSERT(
false,
"Unexpected statement kind in class body: ",
kindToString(statement.kind()));
}
}
}
// Populate class attributes
ScriptTypeParser type_parser(shared_from_this());
for (const auto& assign : attributes) {
switch (assign.lhs().kind()) {
case TK_VAR: {
const auto name = Var(assign.lhs()).name().name();
TORCH_INTERNAL_ASSERT(name != "__parameters__");
const auto type = type_parser.parseTypeFromExpr(assign.type().get());
const bool is_parameter = parameter_names.count(name);
class_type->addAttribute(name, type, is_parameter);
} break;
case TK_SUBSCRIPT: {
const auto name =
StringLiteral(Subscript(assign.lhs()).subscript_exprs()[0])
.text();
const auto type = type_parser.parseTypeFromExpr(assign.rhs().get());
const bool is_parameter = parameter_names.count(name);
class_type->addAttribute(name, type, is_parameter);
}
}
}
cu_->register_type(class_type);
const auto self = SimpleSelf(class_type);
cu_->define(qualified_classname, methods, resolvers, &self);
}
void importNamedTuple(
const QualifiedName& qualified_name,
const ClassDef& named_tuple_def) {
ScriptTypeParser type_parser(shared_from_this());
std::vector<std::string> field_names;
std::vector<TypePtr> field_types;
for (const auto& statement : named_tuple_def.body()) {
if (statement.kind() != TK_ASSIGN) {
throw ErrorReport(statement.range())
<< "Unexpected statement in NamedTuple body: "
"only attribute annotations are currently supported.";
}
const auto assign = Assign(statement);
auto name = Var(assign.lhs()).name().name();
field_names.emplace_back(std::move(name));
auto type = type_parser.parseTypeFromExpr(assign.type().get());
field_types.emplace_back(std::move(type));
}
auto tt = TupleType::create(
field_types,
qualified_name,
TupleType::namedTupleSchemaFromNamesAndTypes(
qualified_name, field_names, field_types));
cu_->register_type(tt);
}
void parseAndCheckVersionNumber(Lexer& L) {
size_t version = parseVersionNumber(L);
// note: this cannot be called in the constructor because it may throw
if (version > CURRENT_OP_VERSION_SET) {
throw ErrorReport(L.cur().range)
<< "Attempting to load a script generated from a newer version of "
<< "PyTorch. Maximum supported TorchScript version is "
<< CURRENT_OP_VERSION_SET
<< " but the script being loaded is version " << version;
}
// version numbers are specified per-file as a historic artifact.
// There really should be a version per entire source archive.
// We work around this by using the first version number in the components
// that need versions
if (env_.count("torch") == 0) {
env_["torch"] = std::make_shared<BuiltinModule>("aten", version);
env_["ops"] = std::make_shared<OpsValue>(version);
}
}
size_t parseVersionNumber(Lexer& L) {
auto range = L.cur().range;
auto name = L.expect(TK_IDENT).text();
L.expect('=');
std::string version_text = L.expect(TK_NUMBER).text();
L.expect(TK_NEWLINE);
auto version = Const::create(L.cur().range, version_text);
if (name != "op_version_set")
throw ErrorReport(range) << "expected an assignment to op_version_set";
if (!version.isIntegral())
throw ErrorReport(range)
<< "expected an integral version but found " << version.text();
return size_t(version.asIntegral());
}
// older versions of serialization required import statements,
// and defined classes file-at-a-time in import order.
// The problem is that in Python
// it is possible to construct cyclic dependencies between files even
// when there are none between individual classes. New versions of loading
// just compile class-at-a-time, so we no longer need to follow the import
// order. Future serialization may stop producing the import code.
void parseImports(Lexer& L) {
while (L.nextIf(TK_IMPORT)) {
std::ostringstream s;
while (L.cur().kind != TK_NEWLINE) {
s << L.cur().text();
L.next();
}
L.expect(TK_NEWLINE);
}
}
std::shared_ptr<CompilationUnit> cu_;
std::unordered_map<std::string, std::shared_ptr<SugaredValue>> env_;
SourceLoader source_loader_;
std::unordered_set<std::string> loaded_sources_;
// named types and functions loaded from a file but not yet defined because
// their type has not been requested yet.
std::unordered_map<QualifiedName, TreeRef> to_be_defined_;
};
std::shared_ptr<SugaredValue> ClassNamespaceValue::attr(
const SourceRange& loc,
Function& m,
const std::string& name) {
auto fullName = c10::QualifiedName(basename_, name);
// Could be a ClassType or NamedTuple constructor
if (auto serializable_type = si_->findNamedType(fullName)) {
if (auto classType = serializable_type->cast<ClassType>()) {
return std::make_shared<ClassValue>(classType);
} else if (auto tupleType = serializable_type->cast<TupleType>()) {
return std::make_shared<NamedTupleConstructor>(tupleType);
}
}
// Or it could be a free function
if (auto fn = si_->findFunction(fullName)) {
return std::make_shared<FunctionValue>(fn);
}
// If it's none of those things, assume it's another namespace
return std::make_shared<ClassNamespaceValue>(std::move(fullName), si_);
}
SourceImporter::SourceImporter(
// The compilation unit that will own the imported source
std::shared_ptr<CompilationUnit> cu,
const std::vector<at::Tensor>* tensor_table,
SourceLoader loader)
: pImpl(std::make_shared<SourceImporterImpl>(
std::move(cu),
tensor_table,
std::move(loader))) {}
TypePtr SourceImporter::loadNamedType(const QualifiedName& name) const {
TypePtr t = pImpl->findNamedType(name);
TORCH_INTERNAL_ASSERT(t != nullptr);
return t;
}
void SourceImporter::LEGACY_import_methods(
const script::Module& mod,
const std::shared_ptr<Source>& src) {
pImpl->LEGACY_import_methods(mod, src);
}
SourceImporter::~SourceImporter() = default;
} // namespace script
} // namespace jit
} // namespace torch