pytorch/torch/csrc/jit/serialization/import.cpp
Lily Johnson 0dd90cceaf [package] track storages across lifetime of PackageExporter (#59735)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59735

1. Fixes ABA storage identity problem during serialization for `torch.package` by keeping reference of serialized storages through lifetime of `PackageExporter` to prevent reuse of memory address. Achieved by extending logic used in solution to mobile's same issue.
2. Adds determinism to naming scheme of serialized storages in export code paths which utilize `tensor_cdata_naming_scheme`(introduced 2nd mapping in `StorageContext`, now maps `storage cdata ptr` -> `unique id`, `unique id` -> `c10::Storage`)
3. Additionally uses presence of a storage in the `StorageContext` instance as marker for if a storage has been serialized or not, removing the need to scan the `PythonStreamWriter` for presence of the storage's serialization file

Test Plan: Imported from OSS

Reviewed By: suo

Differential Revision: D29075276

Pulled By: Lilyjjo

fbshipit-source-id: 15a5c30b1de99c5bd7079388f2db9b6ece2eca12
2021-06-29 14:16:54 -07:00

400 lines
15 KiB
C++

#include <torch/csrc/jit/serialization/import.h>
#include <ATen/core/functional.h>
#include <ATen/core/ivalue_inl.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/serialization/import_export_helpers.h>
#if !defined(C10_MOBILE) && !defined(C10_DISABLE_LEGACY_IMPORT)
#include <torch/csrc/jit/serialization/import_legacy.h>
#endif
#include <torch/csrc/jit/frontend/script_type_parser.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/passes/subgraph_rewrite.h>
#include <torch/csrc/jit/serialization/import_read.h>
#include <torch/csrc/jit/serialization/import_source.h>
#include <torch/csrc/jit/serialization/pickle.h>
#include <torch/csrc/jit/serialization/source_range_serialization.h>
#include <torch/csrc/jit/serialization/unpickler.h>
#include <caffe2/serialize/file_adapter.h>
#include <caffe2/serialize/inline_container.h>
#include <caffe2/serialize/istream_adapter.h>
#include <ATen/ATen.h>
#include <fmt/format.h>
#include <fstream>
#include <string>
#include <unordered_map>
#include <vector>
namespace torch {
namespace jit {
using caffe2::serialize::FileAdapter;
using caffe2::serialize::IStreamAdapter;
using caffe2::serialize::PyTorchStreamReader;
using caffe2::serialize::ReadAdapterInterface;
void postSetStateValidate(const IValue& v) {
auto obj = v.toObject();
const auto& objType = obj->type();
for (const auto i : c10::irange(objType->numAttributes())) {
const auto& attrType = objType->getAttribute(i);
const auto& attrName = objType->getAttributeName(i);
const auto& slot = obj->getSlot(i);
// const auto attrType = objType->getAttribute(i);
// Verify that all the non-optional attributes have been initialized
// TODO: Issue #20497
if (attrType->kind() != TypeKind::OptionalType &&
attrType->kind() != TypeKind::NoneType) {
TORCH_CHECK(
!slot.isNone(),
fmt::format(
"The field '{}' was left uninitialized after '__setstate__', "
"but expected a value of type '{}'",
attrName,
attrType->repr_str()));
}
}
}
namespace {
// This is a deserializer class which loads script modules from pt files.
// Content of the file is written using PyTorchStreamWriter, for details please
// check caffe2/serialize/inline_container.h.
// The module is saved in pickle. readArchive() is called to parse and construct
// the constant table and the script module.
class ScriptModuleDeserializer final {
public:
ScriptModuleDeserializer(
std::shared_ptr<CompilationUnit> cu,
std::shared_ptr<PyTorchStreamReader> reader)
: compilation_unit_(std::move(cu)),
reader_(std::move(reader)),
code_prefix_("code/"),
pickle_dir_prefix_(""),
tensor_dir_prefix_(""),
source_importer_(
compilation_unit_,
&constants_table_,
[this](const std::string& qualifier) {
return findSourceInArchiveFromQualifier(
*reader_, code_prefix_, qualifier);
},
reader_->version()) {}
ScriptModuleDeserializer(
std::shared_ptr<CompilationUnit> cu,
std::shared_ptr<PyTorchStreamReader> reader,
std::string pickle_dir_prefix,
std::string tensor_dir_prefix,
std::shared_ptr<DeserializationStorageContext> storage_context)
: compilation_unit_(std::move(cu)),
reader_(std::move(reader)),
storage_context_(std::move(storage_context)),
code_prefix_(".data/ts_code/code/"),
pickle_dir_prefix_(std::move(pickle_dir_prefix)),
tensor_dir_prefix_(std::move(tensor_dir_prefix)),
source_importer_(
compilation_unit_,
&constants_table_,
[this](const std::string& qualifier) {
return findSourceInArchiveFromQualifier(
*reader_, code_prefix_, qualifier);
},
reader_->version()) {}
Module deserialize(
c10::optional<at::Device> device,
ExtraFilesMap& extra_files);
private:
IValue readArchive(const std::string& archive_name);
std::shared_ptr<CompilationUnit> compilation_unit_;
std::shared_ptr<PyTorchStreamReader> reader_;
std::shared_ptr<DeserializationStorageContext> storage_context_;
c10::optional<at::Device> device_;
std::vector<at::IValue> constants_table_;
std::string code_prefix_;
std::string pickle_dir_prefix_;
std::string tensor_dir_prefix_;
SourceImporter source_importer_;
};
IValue ScriptModuleDeserializer::readArchive(const std::string& archive_name) {
auto type_resolver = [&](const c10::QualifiedName& qn) {
auto cls = source_importer_.loadType(qn);
return c10::StrongTypePtr(compilation_unit_, std::move(cls));
};
// Decouple how to get obj from type. In this file it's dependent on
// Method.run() and graph executor, etc.
// For bytecode import we need to decouple these dependencies.
auto obj_loader = [&](const at::StrongTypePtr& type, IValue input) {
auto cls = type.type_->expect<at::ClassType>();
auto qn = cls->name();
size_t n = cls->numAttributes();
if (checkHasValidSetGetState(cls)) {
auto obj = c10::ivalue::Object::create(type, n);
// XXX: Do not optimize __setstate__, so that we don't try to
// specialize the class before it is initialized.
GraphOptimizerEnabledGuard guard(false);
Function& set_state = cls->getMethod("__setstate__");
// since we are in the middle of unpickling we might still have lists and
// dicts that do not have accurate tags (e.g. they report they are
// List[Any]). But we need to run __setstate__ which will check the input
// type and may access the tags. Since setstate has a known input type, we
// can correctly restore the tags now by apply the input type of set_state
// to the state object being passed.
// TODO: Remove once [serialization type tags] is landed
restoreAccurateTypeTags(
input, set_state.getSchema().arguments().at(1).type());
set_state({obj, input});
postSetStateValidate(obj);
return obj;
} else {
auto dict = std::move(input).toGenericDict();
auto obj = c10::ivalue::Object::create(type, n);
for (size_t i = 0; i < n; ++i) {
obj->setSlot(i, dict.at(cls->getAttributeName(i)));
}
return obj;
}
};
return readArchiveAndTensors(
/*archive_name=*/archive_name,
/*pickle_prefix=*/pickle_dir_prefix_,
/*tensor_prefix=*/tensor_dir_prefix_,
type_resolver,
obj_loader,
device_,
*reader_.get(),
storage_context_);
}
void rewriteQuantizedConvForBC(const Module& module) {
const std::string& old_quantized_conv2d = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv2d(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point)
return (%r) )";
const std::string& old_quantized_conv2d_relu = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv2d_relu(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point)
return (%r) )";
const std::string& old_quantized_conv3d = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv3d(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point)
return (%r) )";
const std::string& old_quantized_conv3d_relu = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv3d_relu(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point)
return (%r) )";
const std::string& new_quantized_conv2d = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv2d(%x, %packed_params, %r_scale, %r_zero_point)
return (%r) )";
const std::string& new_quantized_conv2d_relu = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv2d_relu(%x, %packed_params, %r_scale, %r_zero_point)
return (%r) )";
const std::string& new_quantized_conv3d = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv3d(%x, %packed_params, %r_scale, %r_zero_point)
return (%r) )";
const std::string& new_quantized_conv3d_relu = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv3d_relu(%x, %packed_params, %r_scale, %r_zero_point)
return (%r) )";
SubgraphRewriter rewriter;
static const std::vector<std::pair<std::string, std::string>>
patterns_and_replacements = {
{old_quantized_conv2d, new_quantized_conv2d},
{old_quantized_conv2d_relu, new_quantized_conv2d_relu},
{old_quantized_conv3d, new_quantized_conv3d},
{old_quantized_conv3d_relu, new_quantized_conv3d_relu},
};
for (const auto& item : patterns_and_replacements) {
rewriter.RegisterRewritePattern(item.first, item.second);
}
rewriter.runOnModule(module);
for (const Module& child : module.children()) {
rewriteQuantizedConvForBC(child);
}
}
Module ScriptModuleDeserializer::deserialize(
c10::optional<at::Device> device,
ExtraFilesMap& extra_files) {
C10_LOG_API_USAGE_ONCE("torch.script.load");
device_ = device;
// Load extra files.
for (const auto& kv : extra_files) {
const std::string& key = "extra/" + kv.first;
if (reader_->hasRecord(key)) {
at::DataPtr meta_ptr;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
size_t meta_size;
std::tie(meta_ptr, meta_size) = reader_->getRecord(key);
extra_files[kv.first] =
std::string(static_cast<char*>(meta_ptr.get()), meta_size);
}
}
if (reader_->hasRecord("model.json") && code_prefix_.compare("code/") == 0) {
#if !defined(C10_MOBILE) && !defined(C10_DISABLE_LEGACY_IMPORT)
return torch::jit::LEGACY_deserialize(compilation_unit_, reader_, device_);
#else
AT_ERROR("Legacy model format is not supported on mobile.");
#endif
}
auto tuple = readArchive("constants").toTuple();
for (auto constant : tuple->elements()) {
constants_table_.push_back(constant.toIValue());
}
auto m = Module(readArchive("data").toObject());
rewriteQuantizedConvForBC(m);
return m;
}
} // namespace
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
std::istream& in,
c10::optional<at::Device> device) {
ExtraFilesMap extra_files;
return import_ir_module(std::move(cu), in, device, extra_files);
}
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
std::istream& in,
c10::optional<at::Device> device,
ExtraFilesMap& extra_files) {
auto reader = torch::make_unique<PyTorchStreamReader>(&in);
ScriptModuleDeserializer deserializer(std::move(cu), std::move(reader));
return deserializer.deserialize(device, extra_files);
}
// For reading unified serialization format from torch.Package.
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
std::shared_ptr<PyTorchStreamReader> reader,
std::shared_ptr<DeserializationStorageContext> storage_context,
c10::optional<at::Device> device,
std::string ts_id) {
ScriptModuleDeserializer deserializer(
std::move(cu),
std::move(reader),
/* pickle_dir_prefix = */ ".data/ts_code/" + ts_id + "/",
/* tensor_dir_prefix = */ ".data/",
storage_context);
ExtraFilesMap extra_files;
return deserializer.deserialize(device, extra_files);
}
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
const std::string& filename,
c10::optional<at::Device> device) {
ExtraFilesMap extra_files;
return import_ir_module(std::move(cu), filename, device, extra_files);
}
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
const std::string& filename,
c10::optional<at::Device> device,
ExtraFilesMap& extra_files) {
auto reader = torch::make_unique<PyTorchStreamReader>(filename);
ScriptModuleDeserializer deserializer(std::move(cu), std::move(reader));
return deserializer.deserialize(device, extra_files);
}
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
std::unique_ptr<ReadAdapterInterface> rai,
c10::optional<at::Device> device) {
ExtraFilesMap extra_files;
return import_ir_module(std::move(cu), std::move(rai), device, extra_files);
}
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
std::unique_ptr<ReadAdapterInterface> rai,
c10::optional<at::Device> device,
ExtraFilesMap& extra_files) {
auto reader = torch::make_unique<PyTorchStreamReader>(std::move(rai));
ScriptModuleDeserializer deserializer(std::move(cu), std::move(reader));
return deserializer.deserialize(device, extra_files);
}
Module load(std::istream& in, c10::optional<at::Device> device) {
ExtraFilesMap extra_files;
return load(in, device, extra_files);
}
Module load(
std::istream& in,
c10::optional<at::Device> device,
ExtraFilesMap& extra_files) {
std::unique_ptr<IStreamAdapter> rai = std::make_unique<IStreamAdapter>(&in);
auto module = load(std::move(rai), device, extra_files);
return module;
}
Module load(const std::string& filename, c10::optional<at::Device> device) {
ExtraFilesMap extra_files;
return load(filename, device, extra_files);
}
Module load(
const std::string& filename,
c10::optional<at::Device> device,
ExtraFilesMap& extra_files) {
std::unique_ptr<FileAdapter> rai = std::make_unique<FileAdapter>(filename);
auto module = load(std::move(rai), device, extra_files);
return module;
}
Module load(
std::shared_ptr<ReadAdapterInterface> rai,
c10::optional<c10::Device> device) {
ExtraFilesMap extra_files;
return load(std::move(rai), device, extra_files);
}
Module load(
std::shared_ptr<ReadAdapterInterface> rai,
c10::optional<c10::Device> device,
ExtraFilesMap& extra_files) {
// Verify that we're loading a zip archive and not a torch.save pickle archive
// (marked by the 0x80 0x02 bytes at the start)
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
TORCH_CHECK(
check_zip_file(rai),
"`torch::jit::load()` received a file from `torch.save()`, "
"but `torch::jit::load()` can only load files"
" produced by `torch.jit.save()`");
auto reader = std::make_shared<PyTorchStreamReader>(std::move(rai));
auto cu = std::make_shared<CompilationUnit>();
ScriptModuleDeserializer deserializer(std::move(cu), std::move(reader));
return deserializer.deserialize(device, extra_files);
}
} // namespace jit
} // namespace torch