mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Follows #131997 Co-authored-by: Aaron Gokaslan <aaronGokaslan@gmail.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/132010 Approved by: https://github.com/Skylion007
48 lines
1.4 KiB
C++
48 lines
1.4 KiB
C++
#include <torch/csrc/jit/passes/clear_profiling.h>
|
|
|
|
#include <torch/csrc/jit/jit_log.h>
|
|
|
|
namespace torch::jit {
|
|
|
|
void unprofileGraphInputs(const std::shared_ptr<Graph>& graph) {
|
|
for (auto i : graph->inputs()) {
|
|
if (i->type()->isSubtypeOf(*TensorType::get())) {
|
|
i->setType(unshapedType(i->type()));
|
|
}
|
|
}
|
|
}
|
|
|
|
void unprofileBlock(Block* start_block) {
|
|
std::vector<Block*> stack;
|
|
stack.push_back(start_block);
|
|
|
|
while (!stack.empty()) {
|
|
Block* block = stack.back();
|
|
stack.pop_back();
|
|
|
|
for (auto n : block->nodes()) {
|
|
for (auto o : n->outputs()) {
|
|
if (o->type()->isSubtypeOf(*TensorType::get())) {
|
|
o->setType(unshapedType(o->type()));
|
|
}
|
|
}
|
|
stack.insert(stack.end(), n->blocks().begin(), n->blocks().end());
|
|
}
|
|
}
|
|
}
|
|
|
|
// We need to make sure that passes that use profiling information
|
|
// use it **only after** guards validating it are inserted
|
|
// Ideally, we would run any pass that relies on profiling information
|
|
// after `InsertBailOuts`, however, practically, some passes
|
|
// (e.g. Peephole) useful to run both w/ and w/o profiling information
|
|
// so we could run them in `preoptimizeGraph` and
|
|
// in `runProfilingInsensitiveOptimizations`
|
|
void ClearProfilingInformation(const std::shared_ptr<Graph>& graph) {
|
|
unprofileGraphInputs(graph);
|
|
unprofileBlock(graph->block());
|
|
GRAPH_DUMP("After ClearProfilingInformation: ", graph);
|
|
}
|
|
|
|
} // namespace torch::jit
|