mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Notable TODOs: 1. Need to implement AutogradHOP to get rid of subclasses before serializing 2. Need to implement mechanism to figure out what subclasses will be used in export when they are not expressed in the inputs Differential Revision: [D69640673](https://our.internmc.facebook.com/intern/diff/D69640673) Pull Request resolved: https://github.com/pytorch/pytorch/pull/147014 Approved by: https://github.com/bdhirsh
252 lines
9.2 KiB
Python
252 lines
9.2 KiB
Python
# mypy: allow-untyped-defs
|
|
from contextlib import contextmanager
|
|
|
|
import torch
|
|
import torch._custom_ops
|
|
from torch._C import DispatchKey
|
|
from torch._higher_order_ops.flat_apply import (
|
|
_ConstantFunction,
|
|
flat_apply,
|
|
to_graphable,
|
|
)
|
|
from torch._higher_order_ops.strict_mode import strict_mode
|
|
from torch._higher_order_ops.utils import autograd_not_implemented
|
|
from torch._ops import HigherOrderOperator
|
|
from torch._subclasses.fake_tensor import FakeTensorMode
|
|
from torch.fx.experimental.proxy_tensor import (
|
|
get_proxy_slot,
|
|
PreDispatchTorchFunctionMode,
|
|
ProxyTorchDispatchMode,
|
|
track_tensor_tree,
|
|
)
|
|
from torch.utils import _pytree as pytree
|
|
from torch.utils._python_dispatch import is_traceable_wrapper_subclass_type
|
|
|
|
|
|
class ExportTracepoint(HigherOrderOperator):
|
|
def __init__(self):
|
|
super().__init__("_export_tracepoint")
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
return super().__call__(*args, **kwargs)
|
|
|
|
|
|
_export_tracepoint = ExportTracepoint()
|
|
|
|
|
|
@_export_tracepoint.py_impl(ProxyTorchDispatchMode)
|
|
def export_tracepoint_dispatch_mode(mode, *args, **kwargs):
|
|
p_args, p_kwargs = pytree.tree_map(mode.tracer.unwrap_proxy, (args, kwargs))
|
|
proxy = mode.tracer.create_proxy(
|
|
"call_function", _export_tracepoint, p_args, p_kwargs
|
|
)
|
|
return track_tensor_tree(args, proxy, constant=None, tracer=mode.tracer)
|
|
|
|
|
|
@_export_tracepoint.py_impl(FakeTensorMode)
|
|
def export_tracepoint_fake_tensor_mode(mode, *args, **kwargs):
|
|
with mode:
|
|
return args
|
|
|
|
|
|
@_export_tracepoint.py_functionalize_impl
|
|
def export_tracepoint_functional(ctx, *args, **kwargs):
|
|
unwrapped_args = ctx.unwrap_tensors(args)
|
|
unwrapped_kwargs = ctx.unwrap_tensors(kwargs)
|
|
|
|
with ctx.redispatch_to_next():
|
|
_export_tracepoint(*unwrapped_args, **unwrapped_kwargs)
|
|
return args
|
|
|
|
|
|
_export_tracepoint.py_impl(DispatchKey.Autograd)(
|
|
autograd_not_implemented(_export_tracepoint, deferred_error=True)
|
|
)
|
|
|
|
|
|
@_export_tracepoint.py_impl(DispatchKey.CPU)
|
|
def export_tracepoint_cpu(*args, **kwargs):
|
|
return args
|
|
|
|
|
|
def _wrap_submodule(mod, path, module_call_specs):
|
|
assert isinstance(mod, torch.nn.Module)
|
|
assert path != ""
|
|
submodule = torch.fx.graph_module._get_attr(mod, path)
|
|
|
|
def update_module_call_signatures(path, in_spec, out_spec):
|
|
if path in module_call_specs:
|
|
assert module_call_specs[path]["in_spec"] == in_spec
|
|
assert module_call_specs[path]["out_spec"] == out_spec
|
|
module_call_specs[path] = {"in_spec": in_spec, "out_spec": out_spec}
|
|
|
|
def check_flattened(flat_args):
|
|
for a in flat_args:
|
|
if not (isinstance(a, (torch.Tensor, str, int, float, bool)) or a is None):
|
|
raise AssertionError(
|
|
f"Only Tensors or scalars are supported as pytree flattened inputs, got: {a}"
|
|
)
|
|
|
|
def pre_hook(module, args, kwargs):
|
|
flat_args, in_spec = pytree.tree_flatten((args, kwargs))
|
|
check_flattened(flat_args)
|
|
flat_args = _export_tracepoint(*flat_args, kind="module_call_inputs", path=path)
|
|
args, kwargs = pytree.tree_unflatten(flat_args, in_spec)
|
|
return args, kwargs
|
|
|
|
def post_hook(module, args, kwargs, res):
|
|
_, in_spec = pytree.tree_flatten((args, kwargs))
|
|
flat_res, out_spec = pytree.tree_flatten(res)
|
|
check_flattened(flat_res)
|
|
flat_res = _export_tracepoint(*flat_res, kind="module_call_outputs", path=path)
|
|
update_module_call_signatures(path, in_spec, out_spec)
|
|
return pytree.tree_unflatten(flat_res, out_spec)
|
|
|
|
pre_handle = submodule.register_forward_pre_hook(pre_hook, with_kwargs=True)
|
|
post_handle = submodule.register_forward_hook(post_hook, with_kwargs=True)
|
|
return pre_handle, post_handle
|
|
|
|
|
|
@contextmanager
|
|
def _wrap_submodules(f, preserve_signature, module_call_signatures):
|
|
handles = []
|
|
|
|
try:
|
|
for path in preserve_signature:
|
|
handles.extend(_wrap_submodule(f, path, module_call_signatures))
|
|
yield
|
|
finally:
|
|
for handle in handles:
|
|
handle.remove()
|
|
|
|
|
|
def _mark_strict_experimental(cls):
|
|
def call(self, *args):
|
|
return strict_mode(self, args)
|
|
|
|
cls.__call__ = call
|
|
return cls
|
|
|
|
|
|
def _register_subclass_spec_proxy_in_tracer(tracer, name, spec):
|
|
"""
|
|
This is a wrapper utility method on top of tracer to cache the
|
|
already registered subclass spec attribute. This is useful because
|
|
Subclass.__init__ will be same for each subclass. By default, fx will
|
|
create multiple attributes/proxies for given attribute.
|
|
"""
|
|
fx_name = name + "0"
|
|
if hasattr(tracer.root, fx_name):
|
|
assert getattr(tracer.root, fx_name) == spec
|
|
return tracer.create_proxy("get_attr", fx_name, (), {})
|
|
|
|
qualname = tracer.get_fresh_qualname(name)
|
|
setattr(tracer.root, qualname, spec)
|
|
return tracer.create_proxy("get_attr", qualname, (), {})
|
|
|
|
|
|
def mark_subclass_constructor_exportable_experimental(constructor_subclass):
|
|
"""
|
|
Experimental decorator that makes subclass to be traceable in export
|
|
with pre-dispatch IR. To make your subclass traceble in export, you need to:
|
|
1. Implement __init__ method for your subclass (Look at DTensor implementation)
|
|
2. Decorate your __init__ method with _mark_constructor_exportable_experimental
|
|
3. Put torch._dynamo_disable decorator to prevent dynamo from peeking into its' impl
|
|
|
|
Example:
|
|
|
|
class FooTensor(torch.Tensor):
|
|
@staticmethod
|
|
def __new__(cls, elem, *, requires_grad=False):
|
|
# ...
|
|
return torch.Tensor._make_subclass(cls, elem, requires_grad=requires_grad)
|
|
|
|
@torch._dynamo_disable
|
|
@mark_subclass_constructor_exportable_experimental
|
|
def __init__(self, elem, ...):
|
|
# ...
|
|
"""
|
|
|
|
def _is_init(fn):
|
|
return callable(fn) and fn.__name__ == "__init__"
|
|
|
|
if not _is_init(constructor_subclass):
|
|
raise RuntimeError(
|
|
f"torch._export.wrappers.mark_constructor_exportable_experimental can only be applied on subclass tensor.__init__"
|
|
f"But, you are adding it on {constructor_subclass.__name__} which is not supported. "
|
|
f"If __init__ doesn't exist on your subclass, please add it. Look at DTensor.__init__ implementation for example"
|
|
)
|
|
|
|
def wrapper(*args, **kwargs):
|
|
if not is_traceable_wrapper_subclass_type(type(args[0])):
|
|
assert constructor_subclass.__qualname__.endswith("__init__")
|
|
obj_name = constructor_subclass.__qualname__[: -len("__init__")]
|
|
raise RuntimeError(
|
|
f"Applying mark_constructor_exportable_experimental on {obj_name} is not valid as it is not a traceable "
|
|
f"tensor subclass. Please look at DTensor.__init__ implementation as an example of proper usage of this API."
|
|
)
|
|
constructor_subclass(*args, **kwargs)
|
|
if not torch._C._is_torch_function_mode_enabled():
|
|
return
|
|
torch_function_mode_stack = torch.overrides._get_current_function_mode_stack()
|
|
|
|
pre_dispatch_tf_modes = [
|
|
mode
|
|
for mode in torch_function_mode_stack
|
|
if isinstance(mode, PreDispatchTorchFunctionMode)
|
|
]
|
|
assert (
|
|
len(pre_dispatch_tf_modes) <= 1
|
|
), f"Expected only one PreDispatchTorchFunctionMode, found {len(pre_dispatch_tf_modes)}"
|
|
|
|
if len(pre_dispatch_tf_modes) == 0:
|
|
return
|
|
|
|
mode = pre_dispatch_tf_modes[0]
|
|
|
|
tracer = mode.tracer
|
|
subclass = args[0]
|
|
|
|
flat_args, in_spec = to_graphable((tuple(args[1:]), kwargs))
|
|
|
|
constructor_spec_name = "_".join(
|
|
constructor_subclass.__qualname__.lower().split(".")
|
|
)
|
|
qualname = tracer.get_fresh_qualname(constructor_spec_name) # type: ignore[union-attr]
|
|
setattr(tracer.root, qualname, in_spec) # type: ignore[union-attr]
|
|
spec_proxy = tracer.create_proxy("get_attr", qualname, (), {})
|
|
flat_proxy_args = pytree.tree_map_only(
|
|
torch.Tensor, lambda x: get_proxy_slot(x, tracer).proxy, flat_args
|
|
)
|
|
|
|
_, func_spec = torch.utils._pytree.tree_flatten(
|
|
_ConstantFunction(type(subclass))
|
|
)
|
|
|
|
# We actually don't want to create a new spec for each instance
|
|
# In fx graph, it will look like dtensor_const_func_spec
|
|
# We can't directly shove DTensor.__init__ into fx as it is not
|
|
# allowed type.
|
|
fxable_constructor_call_spec_name = (
|
|
type(subclass).__name__.lower() + "_const_func_spec"
|
|
)
|
|
|
|
# We should try to reuse the constructor call spec as it is guaranteed to be same
|
|
# for each subclass type. This is different from proxy-ing the init arguments which
|
|
# can't be reused because for example, DTensor can receive different DeviceMesh etc
|
|
# as it's arguments
|
|
func_spec_proxy = _register_subclass_spec_proxy_in_tracer(
|
|
tracer, fxable_constructor_call_spec_name, func_spec
|
|
)
|
|
|
|
inner_proxy = tracer.create_proxy(
|
|
"call_function",
|
|
flat_apply,
|
|
(func_spec_proxy, spec_proxy, *flat_proxy_args),
|
|
{},
|
|
)
|
|
track_tensor_tree(subclass, inner_proxy, constant=None, tracer=tracer)
|
|
return
|
|
|
|
return wrapper
|