pytorch/torch/csrc/autograd/python_function.cpp
Michael Carilli 0d2762e876 Minor fix to reenable nvtx sequence numbers for the forward methods of custom (Python) autograd functions (#13876)
Summary:
Some of our arch people (mkolod, Aditya Agrawal, kevinstephano) notified me that the sequence number annotations weren't showing up for forward methods of custom autograd functions, which was breaking their nvprof dump parsing.  Two one-line fixes in the appropriate code paths.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13876

Differential Revision: D13042381

Pulled By: ezyang

fbshipit-source-id: a114118f5c07ad4ba482e7a4892d08805b23c65b
2018-11-13 11:10:32 -08:00

1101 lines
38 KiB
C++

#include "torch/csrc/autograd/python_function.h"
#include "torch/csrc/python_headers.h"
#include <structmember.h>
#include <unordered_map>
#include <unordered_set>
#include <exception>
#include <ATen/ATen.h>
#include "THP.h"
#include "torch/csrc/autograd/grad_mode.h"
#include "torch/csrc/autograd/functions/accumulate_grad.h"
#include "torch/csrc/autograd/functions/basic_ops.h"
#include "torch/csrc/autograd/functions/utils.h"
#include "torch/csrc/autograd/python_cpp_function.h"
#include "torch/csrc/autograd/python_hook.h"
#include "torch/csrc/autograd/saved_variable.h"
#include "torch/csrc/autograd/python_anomaly_mode.h"
#include "torch/csrc/jit/tracer.h"
#include "torch/csrc/jit/python_tracer.h"
#include "torch/csrc/DynamicTypes.h"
#include "torch/csrc/utils/auto_gil.h"
#include "torch/csrc/Exceptions.h"
#include <exception>
#include <functional>
#include <memory>
#include <stdexcept>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
using namespace torch;
using namespace torch::autograd;
using namespace torch::jit;
using at::Tensor;
PyObject *THPFunctionClass = nullptr;
#define THPFunction_assert(condition, ...) \
if (!(condition)) { THPUtils_setError(__VA_ARGS__); throw python_error(); }
namespace torch { namespace autograd {
VariableInfo::VariableInfo(const Variable& var)
: type(&var.type())
, device(var.device())
, size(var.sizes().vec())
, requires_grad(var.requires_grad()) {
}
Variable VariableInfo::zeros(at::OptionalDeviceGuard& device_guard) const {
// NB: This will NOT work if we ever get mixed device gradients
device_guard.reset_device(device);
return at::zeros(size, type->options());
}
auto PyFunction::legacy_apply(const variable_list& inputs) -> variable_list {
AutoGIL gil;
THPObjectPtr pyInputs(PyTuple_New(inputs.size()));
if (!pyInputs) throw python_error();
for (size_t i = 0; i != inputs.size(); ++i) {
PyTuple_SET_ITEM(pyInputs.get(), i, THPVariable_Wrap(inputs[i]));
}
THPObjectPtr r(PyObject_CallMethod(
obj, "_do_backward", "OO", pyInputs.get(), Py_True));
if (!r) throw python_error();
auto num_outputs = PyTuple_GET_SIZE(r.get());
tensor_list tensor_results(num_outputs);
for (int i = 0; i != num_outputs; ++i) {
PyObject* obj = PyTuple_GET_ITEM(r.get(), i);
if (obj != Py_None) {
if (!THPVariable_Check(obj)) {
std::string msg("expected Variable (got '");
msg += THPUtils_typename(obj);
msg += "')'";
throw std::runtime_error(msg);
}
tensor_results[i] = ((THPVariable*)obj)->cdata.data();
}
}
// XXX: this might get requires_grad wrong - there's no way to figure out
// if _do_backward didn't use ctx.saved_tensors and as a result some
// Variables might require grad, even if no args do. Unfortunately, this
// leads to unexpected error messages ("no nodes require computing gradients"),
// but I don't have a better idea. These functions would raise an error
// in backward anyway.
return wrap_outputs(
inputs,
std::move(tensor_results),
[this](edge_list&& next_edges) {
return std::make_shared<Error>(
name() + " is not differentiable twice", std::move(next_edges));
});
}
// NOTE: this function is written in a way that assumes it's only called for backward;
// it's used by engine.cpp. This is responsible for forwarding a call from
// C++'s Function::apply to a Python method "apply".
auto PyFunction::apply(variable_list&& inputs) -> variable_list {
AutoGIL gil;
at::OptionalDeviceGuard _device_guard;
THPFunction* py_fn = (THPFunction*)obj;
THPObjectPtr _legacy(PyObject_GetAttrString(obj, "_is_legacy"));
if (_legacy == Py_True) {
return legacy_apply(inputs);
}
// Massage a C++ variable_list into a Python arguments tuple
auto num_inputs = inputs.size();
THPObjectPtr pyInputs(PyTuple_New(num_inputs));
if (!pyInputs) throw python_error();
auto& output_info = py_fn->output_info;
for (size_t i = 0; i < num_inputs; ++i) {
PyObject* input;
if (inputs[i].defined()) {
input = THPVariable_Wrap(inputs[i]);
} else {
input = THPVariable_Wrap(output_info[i].zeros(_device_guard));
}
if (!input) throw python_error();
PyTuple_SET_ITEM(pyInputs.get(), i, input);
}
THPObjectPtr apply_fn(PyObject_GetAttrString(obj, "apply"));
if (!apply_fn) throw python_error();
THPObjectPtr r(PyObject_CallObject(apply_fn, pyInputs.get()));
if (!r) throw python_error();
ensure_tuple(r);
auto& is_variable_input = py_fn->is_variable_input;
int num_outputs = PyTuple_GET_SIZE(r.get());
int num_forward_inputs = is_variable_input.size();
// Returning too many results is ok, but only as long as they're all None.
// Truncate the result tuple in that case.
if (num_outputs > num_forward_inputs) {
bool all_none = true;
for (int i = num_forward_inputs; i < num_outputs; i++) {
all_none &= PyTuple_GET_ITEM(r.get(), i) == Py_None;
}
if (all_none) {
num_outputs = num_forward_inputs;
r = PyTuple_GetSlice(r.get(), 0, num_forward_inputs);
if (!r) throw python_error();
}
}
// Now the number of gradients should match
if (num_outputs != num_forward_inputs) {
std::string msg("function ");
msg += name() + " returned an incorrect number of gradients (expected ";
msg += std::to_string(num_forward_inputs) + ", got " ;
msg += std::to_string(num_outputs) + ")";
throw std::runtime_error(msg);
}
// Massage the Python results tuple back into a C++ variable_list
variable_list results;
results.reserve(num_outputs);
auto& input_info = py_fn->input_info;
for (int i = 0; i != num_outputs; ++i) {
PyObject* output = PyTuple_GET_ITEM(r.get(), i);
bool was_variable = is_variable_input[i];
if (!was_variable) {
if (output != Py_None) {
std::string msg("function ");
msg += name() + " returned a gradient different than None at position ";
msg += std::to_string(i + 1) + ", but the corresponding forward input was not a Variable";
throw std::runtime_error(msg);
}
continue;
}
if (output == Py_None) {
auto& info = input_info[results.size()];
if (info.requires_grad) {
results.emplace_back(info.zeros(_device_guard));
} else {
results.emplace_back();
}
} else {
if (!THPVariable_Check(output)) {
std::string msg("expected Variable or None (got ");
msg += THPUtils_typename(output);
msg += ")";
throw std::runtime_error(msg);
}
results.emplace_back(((THPVariable*)output)->cdata);
}
}
return results;
}
auto PyFunction::is_traceable() -> bool {
AutoGIL gil;
THPObjectPtr forward_class {PyObject_GetAttrString(obj, "_forward_cls")};
if (!forward_class) throw python_error();
THPObjectPtr traceable_py_bool {PyObject_GetAttrString(forward_class, "is_traceable")};
if (!traceable_py_bool) throw python_error();
return traceable_py_bool == Py_True;
}
auto PyFunction::release_variables() -> void {
AutoGIL gil;
auto f = (THPFunction*) obj;
f->saved_variables.clear();
f->has_freed_buffers = 1;
}
auto PyFunction::name() const -> std::string {
AutoGIL gil;
auto f = (THPFunction*) obj;
auto name = std::string(Py_TYPE(f)->tp_name);
THPObjectPtr _legacy(PyObject_GetAttrString(obj, "_is_legacy"));
if (_legacy == Py_True) {
name += "LegacyBackward";
}
return name;
}
auto PyFunction::get_shared_ptr() -> std::shared_ptr<Function> {
return THPFunction_asFunction((THPFunction*)obj);
}
}} // namespace torch::autograd
// Traverse and clear are required for supporting Python's GC cycle handling.
static int THPFunction_traverse(THPFunction *self, visitproc visit, void *arg)
{
for (const auto& hook : self->cdata.pre_hooks()) {
if (auto pyhook = dynamic_cast<PyFunctionPreHook*>(hook.get())) {
Py_VISIT(pyhook->dict);
}
}
for (const auto& hook : self->cdata.post_hooks()) {
if (auto pyhook = dynamic_cast<PyFunctionPostHook*>(hook.get())) {
Py_VISIT(pyhook->dict);
}
}
Py_VISIT(self->to_save);
Py_VISIT(self->non_differentiable);
Py_VISIT(self->dirty_tensors);
return 0;
}
static int THPFunction_clear(THPFunction *self)
{
self->cdata.clear_input_metadata();
Py_CLEAR(self->needs_input_grad);
Py_CLEAR(self->to_save);
Py_CLEAR(self->non_differentiable);
Py_CLEAR(self->dirty_tensors);
self->output_info.clear();
self->input_info.clear();
self->saved_variables.clear();
self->is_variable_input.clear();
// Moving the hooks out makes sure to first disassociate them from the
// function, but without destroying any of them. They will get deleted when
// exiting this scope. This is important, because deleting Python objects can
// trigger deletion of other objects, and they can reference this function,
// seeing it in a half-deleted state.
auto pre_hooks = std::move(self->cdata.pre_hooks());
auto post_hooks = std::move(self->cdata.post_hooks());
return 0;
}
static void THPFunction_dealloc(THPFunction* self)
{
PyObject_GC_UnTrack(self);
THPFunction_clear(self);
self->cdata.~PyFunction();
self->output_info.~vector();
self->input_info.~vector();
self->saved_variables.~vector();
self->is_variable_input.~vector();
Py_TYPE(self)->tp_free((PyObject*)self);
}
PyObject *THPFunction_new(PyTypeObject *type, PyObject *args, PyObject *kwargs)
{
PyObject* obj = type->tp_alloc(type, 0);
if (!obj) return nullptr;
// Python zero-initializes the object memory, so there's no need to initialize
// most fields
THPFunction* self = (THPFunction*)obj;
new (&self->cdata) PyFunction(obj);
new (&self->output_info) std::vector<VariableInfo>();
new (&self->input_info) std::vector<VariableInfo>();
new (&self->saved_variables) std::vector<SavedVariable>();
new (&self->is_variable_input) std::vector<bool>();
return obj;
}
////////////////////////////////////////////////////////////////////////////////
// Forward
////////////////////////////////////////////////////////////////////////////////
using t2var_type = std::unordered_map<PyObject *, THPVariable *>;
// Bump the counters of all recorded dirty input tensors, adding each of them
// into dirty_inputs. Also does some sanity checking.
static std::vector<PyObject*> _mark_dirty(THPFunction *self)
{
// Increase versions of modified tensors
std::vector<PyObject*> dirty_inputs;
if (!self->dirty_tensors) return dirty_inputs;
THPFunction_assert(PyTuple_Check(self->dirty_tensors), "autograd "
"internal error: dirty_tensors attribute is expected to be a tuple "
"but is %s", THPUtils_typename(self->dirty_tensors));
Py_ssize_t num_dirty = PyTuple_GET_SIZE(self->dirty_tensors);
for (int i = 0; i < num_dirty; i++) {
PyObject *obj = PyTuple_GET_ITEM(self->dirty_tensors, i);
THPFunction_assert(THPVariable_Check(obj), "mark_dirty can "
"only accept variables, but argument %d is of type %s", i,
THPUtils_typename(obj));
dirty_inputs.push_back(obj);
auto variable = (THPVariable*)obj;
variable->cdata.bump_version();
}
// We're not going to ever need this so let's remove references now
Py_CLEAR(self->dirty_tensors);
return dirty_inputs;
}
static std::unordered_set<PyObject*> _parse_non_differentiable(THPFunction *self);
// Given a Python tuple of raw output tensors (raw_output), set each of
// the corresponding entries in a different Python tuple (outputs) with
// these tensors wrapped with variables. We save the gradient function (self)
// to the variable if the output requires grad.
//
// There is a considerable amount of complexity to handle if the operation
// that produced these output tensors is inplace. A mapping of *input*
// tensors to variables (t2var) is used to test if this occurred, and
// the set of dirty tensors (dirty_inputs) is used to figure out what to
// do in this case. After this method is run, t2var is extended with
// mappings for output tensors as well.
static void _wrap_outputs(THPFunction *self,
PyObject* inputs_tuple, PyObject *raw_output, PyObject *outputs, bool is_executable)
{
auto cdata = is_executable ? THPFunction_asFunction(self) : nullptr;
Py_ssize_t num_outputs = PyTuple_GET_SIZE(raw_output);
if (is_executable) {
self->output_info.clear();
self->output_info.reserve(num_outputs);
}
std::unordered_set<PyObject*> inputs;
int num_inputs = PyTuple_GET_SIZE(inputs_tuple);
for (int i = 0; i < num_inputs; i++) {
inputs.emplace(PyTuple_GET_ITEM(inputs_tuple, i));
}
auto non_differentiable = _parse_non_differentiable(self);
auto dirty_inputs = _mark_dirty(self);
auto as_variable = [&](PyObject* obj, int i) -> Variable {
if (THPVariable_Check(obj)) {
return ((THPVariable*)obj)->cdata;
}
throw TypeError("%s.forward: expected Variable (got %s) for return value %d",
Py_TYPE(self)->tp_name, Py_TYPE(obj)->tp_name, i);
};
// Sets the grad_fn and output_nr of an output Variable.
auto set_history = [&](Variable& var, uint32_t output_nr, bool is_input, bool is_modified,
bool is_differentiable) {
if (!is_differentiable) {
if (!var.requires_grad()) {
return;
}
// NB: we don't support returning non-differentiable views that could require grad
if (var.is_view()) {
throw std::runtime_error("Returning Variables sharing storage with other Variables "
"that require grad is not supported in Python functions. "
"Please submit a feature request if you hit this error.");
}
// Return detached aliases of inputs, instead of changing their requires_grad
// property.
if (is_input) {
var = var.detach();
} else {
var.detach_();
}
} else if (is_modified) {
if (var.is_leaf() && var.requires_grad()) {
throw std::runtime_error("a leaf Variable that requires grad has been used in an in-place operation.");
}
// If the input was modified, transplant the grad_fn in the graph:
// grad_fn <- variable <- self ==> grad_fn <- self <- variable
var.grad().reset();
var.clear_hooks();
if (auto grad_acc_fn = var.try_get_grad_accumulator()) {
auto grad_acc = dynamic_cast<AccumulateGrad*>(grad_acc_fn.get());
grad_acc->variable.reset();
}
if (cdata) {
var.rebase_history({cdata, output_nr});
}
} else if (is_input) {
// An input has been returned, but it wasn't modified. Return it as a view
// so that we can attach a new grad_fn to the Variable.
var = var.view_as(var);
var.set_gradient_edge({cdata, output_nr});
} else if (cdata) {
var.set_gradient_edge({cdata, output_nr});
}
};
for (int i = 0; i < num_outputs; i++) {
PyObject* obj = PyTuple_GET_ITEM(raw_output, i);
bool is_input = inputs.count(obj) > 0;
bool is_modified = std::find(dirty_inputs.begin(), dirty_inputs.end(), obj) != dirty_inputs.end();
bool is_differentiable = is_executable && non_differentiable.count(obj) == 0;
// Note that output Variables may be repeated. In that case, the last call
// to set_history wins.
auto var = as_variable(obj, i);
if (cdata) {
auto output_nr = cdata->add_input_metadata(var);
AT_ASSERT(i == (int)output_nr);
}
set_history(var, i, is_input, is_modified, is_differentiable);
if (is_executable) {
self->output_info.emplace_back(var);
}
PyTuple_SET_ITEM(outputs, i, THPVariable_Wrap(var));
}
}
// Save any variables that requested by to_save
static void _save_variables(THPFunction* self)
{
if (!self->to_save) return;
THPFunction_assert(PyTuple_Check(self->to_save), "autograd internal "
"error: to_save attribute is expected to be a tuple but is %s",
THPUtils_typename(self->to_save));
Py_ssize_t num_saved = PyTuple_GET_SIZE(self->to_save);
self->saved_variables.clear();
self->saved_variables.reserve(num_saved);
auto cdata_ptr = &self->cdata;
for (int i = 0; i < num_saved; i++) {
PyObject *obj = PyTuple_GET_ITEM(self->to_save, i);
if (obj == Py_None) {
self->saved_variables.emplace_back();
continue;
} else if (THPVariable_Check(obj)) {
auto variable = (THPVariable*)obj;
bool is_output = variable->cdata.grad_fn().get() == cdata_ptr;
self->saved_variables.emplace_back(variable->cdata, is_output);
} else {
throw TypeError(
"save_for_backward can only save variables, but argument %d is of "
"type %s", i, Py_TYPE(obj)->tp_name);
}
}
// Free .to_save
Py_CLEAR(self->to_save);
}
// Mark requires_grad = 0 on non-differentiable variables (as per non_differentiable)
static std::unordered_set<PyObject*>
_parse_non_differentiable(THPFunction *self)
{
std::unordered_set<PyObject*> set;
if (!self->non_differentiable) return set;
THPFunction_assert(PyTuple_Check(self->non_differentiable), "autograd "
"internal error: non_differentiable attribute is expected to be a "
"tuple but is %s", THPUtils_typename(self->non_differentiable));
Py_ssize_t num_nondiff = PyTuple_GET_SIZE(self->non_differentiable);
set.reserve(num_nondiff);
for (int i = 0; i < num_nondiff; i++) {
PyObject *t = PyTuple_GET_ITEM(self->non_differentiable, i);
THPFunction_assert(THPVariable_Check(t), "mark_non_differentiable "
"only accepts variable arguments, but got %s", THPUtils_typename(t));
set.insert(t);
}
Py_CLEAR(self->non_differentiable);
return set;
}
struct UnpackedInput {
THPObjectPtr input_tuple;
variable_list input_vars;
};
struct InputFlags {
bool is_executable = false;
edge_list next_edges;
THPObjectPtr needs_input_grad;
std::vector<bool> is_variable_input;
};
template<bool enforce_variables>
std::pair<UnpackedInput, InputFlags> unpack_input(PyObject *args) {
UnpackedInput unpacked;
InputFlags flags;
auto num_args = PyTuple_GET_SIZE(args);
unpacked.input_tuple = PyTuple_New(num_args);
flags.needs_input_grad = PyTuple_New(num_args);
for (int i = 0; i < num_args; i++) {
PyObject *arg = PyTuple_GET_ITEM(args, i);
bool is_variable = THPVariable_Check(arg);
flags.is_variable_input.push_back(is_variable);
if (!is_variable) {
// TODO: remove this code path once Variable and Tensor are merged in Python
if (enforce_variables) {
THPUtils_setError("expected a Variable argument, but got %s",
THPUtils_typename(arg));
throw python_error();
}
Py_INCREF(Py_False);
PyTuple_SET_ITEM(flags.needs_input_grad.get(), i, Py_False);
} else {
THPVariable* variable = (THPVariable*)arg;
unpacked.input_vars.push_back(variable->cdata);
PyObject* needs_grad = variable->cdata.requires_grad() ? Py_True : Py_False;
Py_INCREF(needs_grad);
PyTuple_SET_ITEM(flags.needs_input_grad.get(), i, needs_grad);
}
Py_INCREF(arg);
PyTuple_SET_ITEM(unpacked.input_tuple.get(), i, arg);
}
flags.is_executable = GradMode::is_enabled() && any_variable_requires_grad(unpacked.input_vars);
flags.next_edges = collect_next_edges(unpacked.input_vars);
return std::make_pair(std::move(unpacked), std::move(flags));
}
static void _assert_not_tracing(const char* name, const variable_list& input_vars) {
if (tracer::isTracing()) {
std::ostringstream oss;
oss << "Attempted to trace " << name;
oss << ", but tracing of legacy functions is not supported";
throw std::runtime_error(oss.str());
}
}
static Node* _trace_pre_record(
PyObject* op_obj,
PyObject *input_objects,
const variable_list& input_vars) {
if (!jit::tracer::isTracing()) {
return nullptr;
}
// Save scalar args and the calling convention
auto num_args = PyTuple_GET_SIZE(input_objects);
pyobj_list scalar_args;
std::string arg_types;
arg_types.reserve(num_args);
scalar_args.reserve(num_args);
for (int i = 0; i < num_args; i++) {
PyObject *arg_object = PyTuple_GET_ITEM(input_objects, i);
if (THPVariable_Check(arg_object)) {
arg_types.push_back('d');
} else {
arg_types.push_back('c');
Py_INCREF(arg_object);
scalar_args.emplace_back(arg_object);
}
}
Py_INCREF(op_obj);
auto pyobj = THPObjectPtr(op_obj);
return jit::tracer::preRecordPythonTrace(
std::move(pyobj),
std::move(arg_types),
input_vars,
std::move(scalar_args));
}
static void _trace_post_record(
Node* node,
PyObject* op_obj,
const variable_list& input_vars,
PyObject *output_objects,
bool is_inplace,
bool unpack_output) {
if (!jit::tracer::isTracing()) {
return;
}
node->i_(attr::inplace, is_inplace);
// Isolate C variable ptrs in a vector
int num_outputs = PyTuple_GET_SIZE(output_objects);
variable_list output_vars(num_outputs);
auto graph = node->owningGraph();
node->addOutput();
if (!unpack_output) {
std::vector<TypePtr> tuple_values(num_outputs, DynamicType::get());
TypePtr tuple_type = TupleType::create(std::move(tuple_values));
node->output()->setType(tuple_type);
auto unpacked = graph->createTupleUnpack(node->output())->insertAfter(node);
node = unpacked;
}
for (int i = 0; i < num_outputs; ++i) {
auto var = (THPVariable*)PyTuple_GET_ITEM(output_objects, i);
Value* value = node->outputs()[i];
if (var->cdata.defined()) {
value->inferTypeFrom(var->cdata);
jit::tracer::setValueTrace(autograd::as_variable_ref(var->cdata), value);
}
}
}
PyObject* process_outputs(PyObject *op_obj, THPFunction* grad_fn, const UnpackedInput& unpacked,
PyObject *inputs, THPObjectPtr&& raw_output, bool is_executable,
Node* node) {
bool unpack_output = ensure_tuple(raw_output);
auto num_outputs = PyTuple_GET_SIZE(raw_output.get());
THPObjectPtr outputs(PyTuple_New(num_outputs));
if (!outputs) throw python_error();
grad_fn->cdata.clear_input_metadata();
// Record type, device, and size information about inputs
if (is_executable) {
grad_fn->input_info.clear();
grad_fn->input_info.reserve(unpacked.input_vars.size());
for (auto& var : unpacked.input_vars) {
grad_fn->input_info.emplace_back(var);
}
}
bool is_inplace = static_cast<bool>(grad_fn->dirty_tensors);
_wrap_outputs(grad_fn, inputs, raw_output, outputs, is_executable);
_trace_post_record(node, op_obj, unpacked.input_vars, outputs, is_inplace, unpack_output);
if (is_executable) {
_save_variables(grad_fn);
} else {
// Remove unnecessary attributes
Py_XDECREF(grad_fn->to_save);
grad_fn->to_save = nullptr;
Py_XDECREF(grad_fn->non_differentiable);
grad_fn->non_differentiable = nullptr;
}
// Unpack the output, unless .forward() returned a tuple
if (unpack_output) {
PyObject *output = PyTuple_GET_ITEM(outputs.get(), 0);
Py_INCREF(output);
return output;
}
return outputs.release();
}
// Legacy codepath
PyObject *THPFunction_do_forward(THPFunction *self, PyObject *_inputs)
{
HANDLE_TH_ERRORS
torch::autograd::profiler::RecordFunction record(Py_TYPE(self)->tp_name,
Function::peek_at_next_sequence_nr());
auto info_pair = unpack_input<true>(_inputs);
auto& unpacked_input = info_pair.first;
auto& input_info = info_pair.second;
bool is_executable = input_info.is_executable;
self->cdata.set_next_edges(std::move(input_info.next_edges));
self->needs_input_grad = input_info.needs_input_grad.release();
// We don't support tracing in the legacy code path
_assert_not_tracing(Py_TYPE(self)->tp_name, unpacked_input.input_vars);
// Now we're ready to call a forward (implemented in Python)
THPObjectPtr raw_output;
{
AutoGradMode grad_mode(false);
THPObjectPtr forward_fn(PyObject_GetAttrString((PyObject*)self, "forward"));
if (!forward_fn) return nullptr;
raw_output = PyObject_CallObject(forward_fn, unpacked_input.input_tuple);
if (!raw_output) return nullptr;
}
return process_outputs(nullptr, self, unpacked_input, _inputs, std::move(raw_output),
is_executable, nullptr);
END_HANDLE_TH_ERRORS
}
PyObject *THPFunction_apply(PyObject *cls, PyObject *inputs)
{
HANDLE_TH_ERRORS
torch::autograd::profiler::RecordFunction record(((PyTypeObject*)cls)->tp_name,
Function::peek_at_next_sequence_nr());
THPObjectPtr backward_cls(PyObject_GetAttrString(cls, "_backward_cls"));
if (!backward_cls) return nullptr;
THPObjectPtr ctx_obj(PyObject_CallFunctionObjArgs(backward_cls, nullptr));
if (!ctx_obj) return nullptr;
THPFunction* ctx = (THPFunction*)ctx_obj.get();
// Prepare inputs and allocate context (grad fn)
auto info_pair = unpack_input<false>(inputs);
UnpackedInput& unpacked_input = info_pair.first;
InputFlags& input_info = info_pair.second;
// Record input nodes if tracing
auto* node = _trace_pre_record(cls, inputs, unpacked_input.input_vars);
// Initialize backward function (and ctx)
bool is_executable = input_info.is_executable;
ctx->cdata.set_next_edges(std::move(input_info.next_edges));
ctx->needs_input_grad = input_info.needs_input_grad.release();
ctx->is_variable_input = std::move(input_info.is_variable_input);
// Prepend ctx to input_tuple, in preparation for static method call
auto num_args = PyTuple_GET_SIZE(inputs);
THPObjectPtr ctx_input_tuple(PyTuple_New(num_args + 1));
PyTuple_SET_ITEM(ctx_input_tuple.get(), 0, ctx_obj.release());
for (int i = 0; i < num_args; ++i) {
PyObject *arg = PyTuple_GET_ITEM(unpacked_input.input_tuple.get(), i);
Py_INCREF(arg);
PyTuple_SET_ITEM(ctx_input_tuple.get(), i + 1, arg);
}
// Call forward
THPObjectPtr tensor_outputs;
{
AutoGradMode grad_mode(false);
THPObjectPtr forward_fn(PyObject_GetAttrString(cls, "forward"));
if (!forward_fn) return nullptr;
tensor_outputs = PyObject_CallObject(forward_fn, ctx_input_tuple);
if (!tensor_outputs) return nullptr;
}
return process_outputs(cls, ctx, unpacked_input, inputs, std::move(tensor_outputs),
is_executable, node);
END_HANDLE_TH_ERRORS
}
////////////////////////////////////////////////////////////////////////////////
// Backward
////////////////////////////////////////////////////////////////////////////////
static void _prepare_grads(THPFunction *self, THPObjectPtr& raw_grads, bool is_grad_output)
{
at::OptionalDeviceGuard device_guard;
int num_grads = PyTuple_GET_SIZE(raw_grads.get());
// First, check if any of grads is None. If not, there's nothing to do
bool has_none = false;
for (int i = 0; i < num_grads; i++) {
has_none |= PyTuple_GET_ITEM(raw_grads.get(), i) == Py_None;
}
if (!has_none)
return;
THPObjectPtr grads;
grads = PyTuple_New(num_grads);
if (!grads) throw python_error();
// Look for Nones and replace them with new buffers
auto& grads_info = is_grad_output ? self->output_info : self->input_info;
AT_ASSERT(grads_info.size() == (size_t)num_grads);
for (int i = 0; i < num_grads; i++) {
PyObject *grad = PyTuple_GET_ITEM(raw_grads.get(), i);
if (grad == Py_None) {
grad = THPVariable_Wrap(grads_info[i].zeros(device_guard));
if (!grad) throw python_error();
} else {
Py_INCREF(grad);
}
PyTuple_SET_ITEM(grads.get(), i, grad);
}
raw_grads = grads.release();
}
static void _trim_grad_input(THPFunction *self, THPObjectPtr& grad_input)
{
int num_grads = PyTuple_GET_SIZE(grad_input.get());
const int num_outputs = self->cdata.num_outputs();
if (num_grads > num_outputs) {
// Check that all extra grads are none
bool all_none = true;
for (int i = num_outputs; i < num_grads; i++) {
all_none = (PyTuple_GET_ITEM(grad_input.get(), i) == Py_None);
if (!all_none) break;
}
// If yes, slice the tuple
if (all_none) {
num_grads = num_outputs;
grad_input = PyTuple_GetSlice(grad_input.get(), 0, num_grads);
if (!grad_input) throw python_error();
}
}
}
PyObject * THPFunction_do_backward(THPFunction *self, PyObject *args)
{
try {
Py_ssize_t num_args = args ? PyTuple_GET_SIZE(args) : 0;
THPUtils_assert(num_args == 2, "_do_backward expects exactly two arguments");
PyObject *raw_grad_output = PyTuple_GET_ITEM(args, 0);
PyObject *retain_variables = PyTuple_GET_ITEM(args, 1);
if (!PyTuple_Check(raw_grad_output) || !PyBool_Check(retain_variables)) {
THPUtils_invalidArguments(args, nullptr, "_do_backward", 1, "(tuple, bool)");
return nullptr;
}
THPUtils_assert(PyTuple_GET_SIZE(raw_grad_output) == self->cdata.num_inputs(),
"%s got an invalid number of gradients (expected %d got %d)",
THPUtils_typename(self), self->cdata.num_inputs(),
PyTuple_GET_SIZE(raw_grad_output));
// Some of the output might have been unused, so we have to allocate
// zero-filled buffers instead
Py_INCREF(raw_grad_output);
THPObjectPtr grad_output(raw_grad_output);
_prepare_grads(self, grad_output, true);
// self.backward(*grad_output)
THPObjectPtr backward_fn(PyObject_GetAttrString((PyObject*)self, "backward"));
THPUtils_assert(backward_fn.get(), "function %s doesn't implement a required "
"'backward' method", THPUtils_typename((PyObject*)self));
THPObjectPtr grad_input(PyObject_CallObject(backward_fn, grad_output.get()));
if (!grad_input) return nullptr;
ensure_tuple(grad_input);
// We allow functions to return more gradients, than there were outputs,
// if and only if the additional ones are all None
_trim_grad_input(self, grad_input);
int num_grads = PyTuple_GET_SIZE(grad_input.get());
int num_outputs = self->cdata.num_outputs();
THPUtils_assert(num_grads == num_outputs, "%s returned an invalid number of "
"gradient tensors (expected %d, but got %d)", THPUtils_typename(self),
num_outputs, num_grads);
// If any of the remaining grad_inputs are None, zero them.
_prepare_grads(self, grad_input, false);
return grad_input.release();
} catch (python_error& e) {
return nullptr;
} catch (std::exception& e) {
THPUtils_setError(e.what());
return nullptr;
}
}
////////////////////////////////////////////////////////////////////////////////
// Other methods / attributes
////////////////////////////////////////////////////////////////////////////////
PyObject* THPFunction__register_hook_dict(THPFunction *self, PyObject *_var)
{
THPUtils_assert(THPVariable_Check(_var), "_register_hook_dict expected a variable");
THPVariable *var = (THPVariable*)_var;
std::unique_ptr<FunctionPreHook> hook(new PyFunctionPreHook(
var->backward_hooks, var->cdata.output_nr()));
self->cdata.add_pre_hook(std::move(hook));
Py_RETURN_NONE;
}
PyObject* THPFunction_register_hook(THPFunction *self, PyObject *hook)
{
return torch::autograd::registerFunctionHook(self->cdata, hook);
}
static PyObject *unpack_saved_variables(
THPFunction *self,
std::function<PyObject*(const Variable&)> unpack_fn)
{
THPUtils_assert(!self->has_freed_buffers, ERR_BACKWARD_TWICE);
auto& saved_variables = self->saved_variables;
if (saved_variables.empty())
return PyTuple_New(0);
int num_saved = saved_variables.size();
THPObjectPtr saved(PyTuple_New(num_saved));
if (!saved)
return nullptr;
auto saved_for = THPFunction_asFunction(self);
for (int i = 0; i < num_saved; i++) {
auto unpacked_var = saved_variables[i].unpack(saved_for);
THPObjectPtr value;
if (!unpacked_var.defined()) {
Py_INCREF(Py_None);
value = Py_None;
} else {
value = unpack_fn(unpacked_var);
}
PyTuple_SET_ITEM(saved.get(), i, value.release());
}
return saved.release();
}
PyObject *THPFunction_saved_tensors(THPFunction *self, void *_unused)
{
HANDLE_TH_ERRORS
return unpack_saved_variables(self, [](const Variable& var) {
return THPVariable_Wrap(var);
});
END_HANDLE_TH_ERRORS
}
PyObject *THPFunction_saved_variables(THPFunction *self, void *_unused)
{
HANDLE_TH_ERRORS
auto r = PyErr_WarnEx(PyExc_DeprecationWarning,
"'saved_variables' is deprecated; use 'saved_tensors'", 0);
if (r != 0) throw python_error();
return unpack_saved_variables(self, [](const Variable& var) {
return THPVariable_Wrap(var);
});
END_HANDLE_TH_ERRORS
}
PyObject *THPFunction_next_functions(THPFunction *self, void *_unused)
{
const auto num_outputs = self->cdata.num_outputs();
THPObjectPtr result(PyTuple_New(num_outputs));
if (!result)
return nullptr;
for (uint32_t i = 0; i < num_outputs; i++) {
THPObjectPtr fn_tuple(PyTuple_New(2));
if (!fn_tuple) return nullptr;
const auto& edge = self->cdata.next_edge(i);
PyObject* fn = functionToPyObject(edge.function);
if (!fn) return nullptr;
PyTuple_SET_ITEM(fn_tuple.get(), 0, fn);
PyTuple_SET_ITEM(fn_tuple.get(), 1, THPUtils_packInt64(edge.input_nr));
PyTuple_SET_ITEM(result.get(), i, fn_tuple.release());
}
return result.release();
}
PyObject *THPFunction_metadata(THPFunction *self, void *_unused)
{
auto metadata = static_cast<PyAnomalyMetadata*>(self->cdata.metadata())->dict();
Py_INCREF(metadata);
return metadata;
}
typedef PyObject *(*getter)(PyObject *, void *);
typedef int (*setter)(PyObject *, PyObject *, void *);
namespace {
template<PyObject* THPFunction::*ptr>
PyObject* getObject(PyObject* obj, void* _unused) {
auto self = (THPFunction*)obj;
PyObject* value = self->*ptr;
if (!value) {
Py_RETURN_NONE;
}
Py_INCREF(value);
return value;
}
template<PyObject* THPFunction::*ptr>
int setObject(PyObject* obj, PyObject* value, void* _unused) {
auto self = (THPFunction*)obj;
if (value == Py_None) {
value = nullptr;
}
Py_XDECREF((self->*ptr));
Py_XINCREF(value);
self->*ptr = value;
return 0;
}
template<typename M, M THPFunction::*ptr, PyObject* (*Convert)(long)>
PyObject* getMember(PyObject* obj, void* _unused) {
auto self = (THPFunction*)obj;
return Convert(self->*ptr);
}
template<typename M, M Function::*ptr, PyObject* (*Convert)(long)>
PyObject* getImplMember(PyObject* obj, void* _unused) {
auto self = (THPFunction*)obj;
return Convert(self->cdata.*ptr);
}
PyObject* getRequiresGrad(PyObject* obj, void* _unused) {
Py_RETURN_TRUE;
}
}
static struct PyGetSetDef THPFunction_properties[] = {
{"saved_tensors", (getter)THPFunction_saved_tensors, nullptr, nullptr, nullptr},
{"saved_variables", (getter)THPFunction_saved_variables, nullptr, nullptr, nullptr},
{"next_functions", (getter)THPFunction_next_functions, nullptr, nullptr, nullptr},
{"to_save", &getObject<&THPFunction::to_save>, &setObject<&THPFunction::to_save>, nullptr, nullptr},
{"non_differentiable", &getObject<&THPFunction::non_differentiable>, &setObject<&THPFunction::non_differentiable>, nullptr, nullptr},
{"dirty_tensors", &getObject<&THPFunction::dirty_tensors>, &setObject<&THPFunction::dirty_tensors>, nullptr, nullptr},
{"needs_input_grad", &getObject<&THPFunction::needs_input_grad>, nullptr, nullptr, nullptr},
{"requires_grad", getRequiresGrad, nullptr, nullptr, nullptr},
{"metadata", (getter)THPFunction_metadata, nullptr, nullptr, nullptr},
{nullptr}
};
static struct PyMethodDef THPFunction_methods[] = {
{(char*)"apply", (PyCFunction)THPFunction_apply, METH_CLASS | METH_VARARGS, nullptr},
{(char*)"_do_forward", (PyCFunction)THPFunction_do_forward, METH_VARARGS, nullptr},
{(char*)"_do_backward", (PyCFunction)THPFunction_do_backward, METH_VARARGS, nullptr},
{(char*)"_register_hook_dict", (PyCFunction)THPFunction__register_hook_dict, METH_O, nullptr},
{(char*)"register_hook", (PyCFunction)THPFunction_register_hook, METH_O, nullptr},
{nullptr}
};
PyTypeObject THPFunctionType = {
PyVarObject_HEAD_INIT(nullptr, 0)
"torch._C._FunctionBase", /* tp_name */
sizeof(THPFunction), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)THPFunction_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, /* tp_flags */
nullptr, /* tp_doc */
(traverseproc)THPFunction_traverse, /* tp_traverse */
(inquiry)THPFunction_clear, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
THPFunction_methods, /* tp_methods */
0, /* tp_members */
THPFunction_properties, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
THPFunction_new /* tp_new */
};
bool THPFunction_initModule(PyObject *module)
{
if (PyType_Ready(&THPFunctionType) < 0)
return false;
Py_INCREF(&THPFunctionType);
PyModule_AddObject(module, "_FunctionBase", (PyObject *)&THPFunctionType);
return true;
}
struct Decref {
void operator()(PyFunction* p) const {
AutoGIL gil;
Py_DECREF(p->obj);
}
};
// Similar to shared_from_this. There's a problem that the Python object
// and its cdata depend on each other being alive, so we can't keep
// shared_ptrs as members, but we'd like to be able to manage the lifetime of
// the objects using shared_ptrs in the C++ graph. This returns a new
// shared_ptr, which will decrement the Python reference count when it's
// destructed. WARNING: it's generally not safe to create weak_ptrs from
// these shared_ptrs since multiple shared_ptrs may control the same underlying
// object.
std::shared_ptr<PyFunction> THPFunction_asFunction(THPFunction* self)
{
if (!self) {
return std::shared_ptr<PyFunction>();
}
Py_INCREF((PyObject*)self);
return std::shared_ptr<PyFunction>(&self->cdata, Decref());
}