pytorch/test/cpp/lazy/test_shape.cpp
Bin Bao 787ded5103 Add lazy::Shape::numel() (#68314)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68314

Add a convenience to lazy::Shape for counting the number of elements (by multiplying out the dimensions).  This is a method on Tensor, and in switching other lazy tensor shape utils to use aten shape inference, we need numel counts.

Test Plan: add unit tests

Reviewed By: alanwaketan

Differential Revision: D32409138

fbshipit-source-id: 3ae725300f8826d38e45412f46501d5e5f776fb2
2021-11-29 08:38:09 -08:00

102 lines
2.7 KiB
C++

#include <gtest/gtest.h>
#include <sstream>
#include <torch/csrc/lazy/core/shape.h>
namespace torch {
namespace lazy {
TEST(ShapeTest, Basic1) {
auto shape = Shape();
EXPECT_STREQ(shape.to_string().c_str(), "UNKNOWN_SCALAR[]");
EXPECT_EQ(shape.scalar_type(), c10::ScalarType::Undefined);
EXPECT_EQ(shape.dim(), 0);
EXPECT_TRUE(shape.sizes().empty());
EXPECT_THROW(shape.size(0), std::out_of_range);
}
TEST(ShapeTest, Basic2) {
auto shape = Shape(c10::ScalarType::Float, {1, 2, 3});
EXPECT_EQ(shape.numel(), 6);
EXPECT_STREQ(shape.to_string().c_str(), "Float[1,2,3]");
EXPECT_EQ(shape.scalar_type(), c10::ScalarType::Float);
EXPECT_EQ(shape.dim(), 3);
EXPECT_EQ(shape.sizes().size(), 3);
for (int64_t i = 0; i < shape.dim(); i++) {
EXPECT_EQ(shape.sizes()[i], i + 1);
EXPECT_EQ(shape.size(i), i + 1);
}
}
TEST(ShapeTest, Basic3) {
auto shape = Shape(c10::ScalarType::Float, {});
EXPECT_STREQ(shape.to_string().c_str(), "Float[]");
EXPECT_EQ(shape.scalar_type(), c10::ScalarType::Float);
EXPECT_EQ(shape.dim(), 0);
// this is surprising, but it's in line with how 0-D tensors behave
EXPECT_EQ(shape.numel(), 1);
EXPECT_TRUE(shape.sizes().empty());
EXPECT_THROW(shape.size(0), std::out_of_range);
}
TEST(ShapeTest, SetScalarType) {
auto shape = Shape();
shape.set_scalar_type(c10::ScalarType::Long);
EXPECT_EQ(shape.scalar_type(), c10::ScalarType::Long);
}
TEST(ShapeTest, SetSize) {
auto shape1 = Shape();
EXPECT_THROW(shape1.set_size(0, 0), std::out_of_range);
auto shape2 = Shape(c10::ScalarType::Float, {1, 2, 3});
shape2.set_size(0, 3);
EXPECT_EQ(shape2.sizes()[0], 3);
EXPECT_EQ(shape2.size(0), 3);
}
TEST(ShapeTest, Equal) {
auto shape1 = Shape(c10::ScalarType::Float, {});
auto shape2 = Shape(c10::ScalarType::Float, {1, 2, 3});
auto shape3 = Shape(c10::ScalarType::Long, {1, 2, 3});
auto shape4 = Shape(c10::ScalarType::Float, {1, 2, 3});
EXPECT_FALSE(shape1 == shape2);
EXPECT_FALSE(shape2 == shape3);
EXPECT_FALSE(shape1 == shape3);
EXPECT_TRUE(shape2 == shape2);
}
TEST(ShapeTest, Ostream) {
auto shape = Shape();
std::stringstream ss;
ss << shape;
EXPECT_EQ(shape.to_string(), ss.str());
}
TEST(ShapeTest, ConvertShapes) {
auto shape1 = Shape(c10::ScalarType::Long, {1, 2, 3});
auto shape2 = Shape(c10::ScalarType::Float, {1, 2});
auto shapes1 = convertShapes({}, {});
EXPECT_TRUE(shapes1.empty());
auto shapes2 = convertShapes({c10::ScalarType::Long}, {{1, 2, 3}});
EXPECT_EQ(shapes2.size(), 1);
EXPECT_EQ(shapes2[0], shape1);
auto shapes3 = convertShapes({c10::ScalarType::Long, c10::ScalarType::Float}, {{1, 2, 3}, {1, 2}});
EXPECT_EQ(shapes3.size(), 2);
EXPECT_EQ(shapes3[0], shape1);
EXPECT_EQ(shapes3[1], shape2);
}
} // namespace lazy
} // namespace torch