mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Avoid exposing defines that conflict with google logging, since this blocks external usage of libtorch in certain cases. All the 'interesting' changes should be in these two files, and the rest should just be mechanical changes via sed. c10/util/logging_is_not_google_glog.h c10/util/logging_is_google_glog.h Fixes https://github.com/pytorch/pytorch/issues/81415 cc @miladm @malfet Pull Request resolved: https://github.com/pytorch/pytorch/pull/82032 Approved by: https://github.com/soumith, https://github.com/miladm
182 lines
5.5 KiB
Plaintext
182 lines
5.5 KiB
Plaintext
/**
|
|
* Copyright (c) 2016-present, Facebook, Inc.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <cfloat>
|
|
|
|
#include "caffe2/core/context_gpu.h"
|
|
#include "modules/detectron/group_spatial_softmax_op.h"
|
|
|
|
namespace caffe2 {
|
|
|
|
namespace {
|
|
|
|
__global__ void GroupSpatialSoftmaxKernel(const int num, const int A, const int W,
|
|
const int H, const float* Xdata, float* Pdata, const int num_classes) {
|
|
// Loop through labels (N x A x H x W)
|
|
CUDA_1D_KERNEL_LOOP(index, num * A * H * W) {
|
|
int D = num_classes * A;
|
|
int x = index % W;
|
|
int y = (index / W) % H;
|
|
int a = (index / (W * H)) % A;
|
|
int i = index / W / H / A;
|
|
|
|
// Subtract max on each cell for numerical reasons
|
|
float max_val = -FLT_MAX;
|
|
for(int c = a * num_classes; c < (a + 1) * num_classes; ++c) {
|
|
int idx = i * (H * W * D) + c * (H * W) + y * W + x;
|
|
max_val = max(max_val, Xdata[idx]);
|
|
}
|
|
// Exponentiate
|
|
float expsum = 0.0f;
|
|
for(int c = a * num_classes; c < (a + 1) * num_classes; ++c) {
|
|
int idx = i * (H * W * D) + c * (H * W) + y * W + x;
|
|
float expx = exp(Xdata[idx] - max_val);
|
|
Pdata[idx] = expx;
|
|
expsum += expx;
|
|
}
|
|
|
|
// Normalize
|
|
for(int c = a * num_classes; c < (a + 1) * num_classes; ++c) {
|
|
int idx = i * (H * W * D) + c * (H * W) + y * W + x;
|
|
Pdata[idx] /= expsum;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
__global__ void SumProbsKernel(const int N, const int A, const int W,
|
|
const int H, const float* Ydata, const float* dYdata,
|
|
float* sum_probs_data, const int num_classes) {
|
|
CUDA_1D_KERNEL_LOOP(i, N * A * W * H) {
|
|
int D = num_classes * A;
|
|
int x = i % W;
|
|
int y = (i / W) % H;
|
|
int a = (i / (W * H)) % A;
|
|
int n = i / (W * H * A);
|
|
|
|
sum_probs_data[i] = 0.0;
|
|
for(int c = a * num_classes; c < (a + 1) * num_classes; ++c) {
|
|
int idx = n * (H * W * D) + c * (H * W) + y * W + x;
|
|
sum_probs_data[i] += (Ydata[idx] * dYdata[idx]);
|
|
}
|
|
}
|
|
}
|
|
|
|
__global__ void SubSumKernel(
|
|
const int N, const int A, const int W, const int H,
|
|
const float* sum_probs_data, float* dXdata, const int num_classes) {
|
|
CUDA_1D_KERNEL_LOOP(i, N * (A * num_classes) * W * H) {
|
|
int D = num_classes * A;
|
|
int x = i % W;
|
|
int y = (i / W) % H;
|
|
int a = ((i / (W * H)) % D) / num_classes;
|
|
int n = i / W / H / D;
|
|
int idx = n * (H * W * A) + a * (H * W) + y * W + x;
|
|
dXdata[i] = (dXdata[i] - sum_probs_data[idx]);
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
template <>
|
|
bool GroupSpatialSoftmaxOp<float, CUDAContext>::RunOnDevice() {
|
|
auto& X = Input(0); // Logits
|
|
|
|
int N = X.dim32(0);
|
|
int D = X.dim32(1);
|
|
int H = X.dim32(2);
|
|
int W = X.dim32(3);
|
|
int A = D / num_classes_;
|
|
|
|
auto* P = Output(0, X.sizes(), at::dtype<float>()); // Probabilities from softmax
|
|
TORCH_DCHECK_EQ(X.ndim(), 4);
|
|
|
|
const float* Xdata = X.data<float>();
|
|
float* Pdata = P->mutable_data<float>();
|
|
|
|
// Softmax for each x,y location
|
|
GroupSpatialSoftmaxKernel<<<CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS,
|
|
0, context_.cuda_stream()>>>(
|
|
N, A, W, H, Xdata, Pdata, num_classes_);
|
|
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
|
return true;
|
|
}
|
|
|
|
|
|
template<>
|
|
bool GroupSpatialSoftmaxGradientOp<float, CUDAContext>::RunOnDevice() {
|
|
auto& Y = Input(0); // Probabilities from softmax
|
|
auto& dY = Input(1);
|
|
|
|
|
|
TORCH_DCHECK_EQ(Y.ndim(), 4);
|
|
|
|
int N = Y.dim32(0);
|
|
int D = Y.dim32(1);
|
|
int H = Y.dim32(2);
|
|
int W = Y.dim32(3);
|
|
int A = D / num_classes_;
|
|
|
|
auto* dX = Output(0, Y.sizes(), at::dtype<float>());
|
|
|
|
if (sum_probs_.size() != N * A * H * W) {
|
|
ReinitializeTensor(&sum_probs_, {N * A * H * W}, at::dtype<float>().device(CUDA));
|
|
}
|
|
|
|
const float* Ydata = Y.data<float>();
|
|
const float* dYdata = dY.data<float>();
|
|
float* dXdata = dX->mutable_data<float>();
|
|
|
|
float* sum_probs_data = sum_probs_.mutable_data<float>();
|
|
math::Set<float, CUDAContext>(
|
|
sum_probs_.size(), 0.0f, sum_probs_data, &context_);
|
|
|
|
// Complete math:
|
|
// J_ij = h_i (delta_ij - h_j)
|
|
// d x_i = sum_j d h_ij = sum_j J_ij * dy_j
|
|
// = sum_j h_i (delta_ij - h_j) * dy_j
|
|
// = h_i dy_i - (sum_j h_i h_j dy_j)
|
|
// = h_i dy_i - h_i sum_j h_j dy_j
|
|
|
|
// Step 0: dx = dy
|
|
context_.Copy<float, CUDAContext, CUDAContext>(Y.size(), dYdata, dXdata);
|
|
|
|
// Step 1: s = Sum(dY[j] * Y[j])
|
|
SumProbsKernel<<<CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS, 0,
|
|
context_.cuda_stream()>>>(
|
|
N, A, W, H, Ydata, dYdata, sum_probs_data, num_classes_);
|
|
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
|
|
|
// Step 2: dX[i] = dX[i] - s
|
|
SubSumKernel<<<CAFFE_GET_BLOCKS(Y.size()), CAFFE_CUDA_NUM_THREADS, 0,
|
|
context_.cuda_stream()>>>(
|
|
N, A, W, H, sum_probs_.data<float>(), dXdata, num_classes_);
|
|
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
|
|
|
// Step 3: dX[i] = Y[i] * dX[i]
|
|
math::Mul<float, CUDAContext>(Y.size(), dXdata, Ydata, dXdata, &context_);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
REGISTER_CUDA_OPERATOR(GroupSpatialSoftmax,
|
|
GroupSpatialSoftmaxOp<float, CUDAContext>);
|
|
REGISTER_CUDA_OPERATOR(GroupSpatialSoftmaxGradient,
|
|
GroupSpatialSoftmaxGradientOp<float, CUDAContext>);
|
|
} // namespace caffe2
|