pytorch/modules/detectron/group_spatial_softmax_op.cu
Will Constable 4f34cd6d1e Replace all CHECK_ and DCHECK_ with TORCH_* macros (#82032)
Avoid exposing defines that conflict with google logging, since this blocks external usage of libtorch in certain cases.

All the 'interesting' changes should be in these two files, and the rest should just be mechanical changes via sed.
c10/util/logging_is_not_google_glog.h
c10/util/logging_is_google_glog.h

Fixes https://github.com/pytorch/pytorch/issues/81415

cc @miladm @malfet
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82032
Approved by: https://github.com/soumith, https://github.com/miladm
2022-07-26 01:20:44 +00:00

182 lines
5.5 KiB
Plaintext

/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cfloat>
#include "caffe2/core/context_gpu.h"
#include "modules/detectron/group_spatial_softmax_op.h"
namespace caffe2 {
namespace {
__global__ void GroupSpatialSoftmaxKernel(const int num, const int A, const int W,
const int H, const float* Xdata, float* Pdata, const int num_classes) {
// Loop through labels (N x A x H x W)
CUDA_1D_KERNEL_LOOP(index, num * A * H * W) {
int D = num_classes * A;
int x = index % W;
int y = (index / W) % H;
int a = (index / (W * H)) % A;
int i = index / W / H / A;
// Subtract max on each cell for numerical reasons
float max_val = -FLT_MAX;
for(int c = a * num_classes; c < (a + 1) * num_classes; ++c) {
int idx = i * (H * W * D) + c * (H * W) + y * W + x;
max_val = max(max_val, Xdata[idx]);
}
// Exponentiate
float expsum = 0.0f;
for(int c = a * num_classes; c < (a + 1) * num_classes; ++c) {
int idx = i * (H * W * D) + c * (H * W) + y * W + x;
float expx = exp(Xdata[idx] - max_val);
Pdata[idx] = expx;
expsum += expx;
}
// Normalize
for(int c = a * num_classes; c < (a + 1) * num_classes; ++c) {
int idx = i * (H * W * D) + c * (H * W) + y * W + x;
Pdata[idx] /= expsum;
}
}
}
__global__ void SumProbsKernel(const int N, const int A, const int W,
const int H, const float* Ydata, const float* dYdata,
float* sum_probs_data, const int num_classes) {
CUDA_1D_KERNEL_LOOP(i, N * A * W * H) {
int D = num_classes * A;
int x = i % W;
int y = (i / W) % H;
int a = (i / (W * H)) % A;
int n = i / (W * H * A);
sum_probs_data[i] = 0.0;
for(int c = a * num_classes; c < (a + 1) * num_classes; ++c) {
int idx = n * (H * W * D) + c * (H * W) + y * W + x;
sum_probs_data[i] += (Ydata[idx] * dYdata[idx]);
}
}
}
__global__ void SubSumKernel(
const int N, const int A, const int W, const int H,
const float* sum_probs_data, float* dXdata, const int num_classes) {
CUDA_1D_KERNEL_LOOP(i, N * (A * num_classes) * W * H) {
int D = num_classes * A;
int x = i % W;
int y = (i / W) % H;
int a = ((i / (W * H)) % D) / num_classes;
int n = i / W / H / D;
int idx = n * (H * W * A) + a * (H * W) + y * W + x;
dXdata[i] = (dXdata[i] - sum_probs_data[idx]);
}
}
} // namespace
template <>
bool GroupSpatialSoftmaxOp<float, CUDAContext>::RunOnDevice() {
auto& X = Input(0); // Logits
int N = X.dim32(0);
int D = X.dim32(1);
int H = X.dim32(2);
int W = X.dim32(3);
int A = D / num_classes_;
auto* P = Output(0, X.sizes(), at::dtype<float>()); // Probabilities from softmax
TORCH_DCHECK_EQ(X.ndim(), 4);
const float* Xdata = X.data<float>();
float* Pdata = P->mutable_data<float>();
// Softmax for each x,y location
GroupSpatialSoftmaxKernel<<<CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS,
0, context_.cuda_stream()>>>(
N, A, W, H, Xdata, Pdata, num_classes_);
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
template<>
bool GroupSpatialSoftmaxGradientOp<float, CUDAContext>::RunOnDevice() {
auto& Y = Input(0); // Probabilities from softmax
auto& dY = Input(1);
TORCH_DCHECK_EQ(Y.ndim(), 4);
int N = Y.dim32(0);
int D = Y.dim32(1);
int H = Y.dim32(2);
int W = Y.dim32(3);
int A = D / num_classes_;
auto* dX = Output(0, Y.sizes(), at::dtype<float>());
if (sum_probs_.size() != N * A * H * W) {
ReinitializeTensor(&sum_probs_, {N * A * H * W}, at::dtype<float>().device(CUDA));
}
const float* Ydata = Y.data<float>();
const float* dYdata = dY.data<float>();
float* dXdata = dX->mutable_data<float>();
float* sum_probs_data = sum_probs_.mutable_data<float>();
math::Set<float, CUDAContext>(
sum_probs_.size(), 0.0f, sum_probs_data, &context_);
// Complete math:
// J_ij = h_i (delta_ij - h_j)
// d x_i = sum_j d h_ij = sum_j J_ij * dy_j
// = sum_j h_i (delta_ij - h_j) * dy_j
// = h_i dy_i - (sum_j h_i h_j dy_j)
// = h_i dy_i - h_i sum_j h_j dy_j
// Step 0: dx = dy
context_.Copy<float, CUDAContext, CUDAContext>(Y.size(), dYdata, dXdata);
// Step 1: s = Sum(dY[j] * Y[j])
SumProbsKernel<<<CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS, 0,
context_.cuda_stream()>>>(
N, A, W, H, Ydata, dYdata, sum_probs_data, num_classes_);
C10_CUDA_KERNEL_LAUNCH_CHECK();
// Step 2: dX[i] = dX[i] - s
SubSumKernel<<<CAFFE_GET_BLOCKS(Y.size()), CAFFE_CUDA_NUM_THREADS, 0,
context_.cuda_stream()>>>(
N, A, W, H, sum_probs_.data<float>(), dXdata, num_classes_);
C10_CUDA_KERNEL_LAUNCH_CHECK();
// Step 3: dX[i] = Y[i] * dX[i]
math::Mul<float, CUDAContext>(Y.size(), dXdata, Ydata, dXdata, &context_);
return true;
}
REGISTER_CUDA_OPERATOR(GroupSpatialSoftmax,
GroupSpatialSoftmaxOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(GroupSpatialSoftmaxGradient,
GroupSpatialSoftmaxGradientOp<float, CUDAContext>);
} // namespace caffe2