pytorch/benchmarks
Bert Maher 93772792e3 [nnc] Get rid of fuser trigger counters (#57334)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57334

Here's a possibly controversial PR.  These counters got in the way of
generalizing the fuser tests to handle arbitrary devices, and I guess I'm just
generally skeptical that they provide much value.  While true that they let us
observe whether fusion groups were created, we already have assertions based on
the shape of the graph, and I'm not sure that I trust those any less than these
counters.

Test Plan: Imported from OSS

Reviewed By: ZolotukhinM

Differential Revision: D29471484

Pulled By: bertmaher

fbshipit-source-id: f6d76f6e72dbfb581acff1d834b0c74500941b57
2021-06-29 22:22:15 -07:00
..
cpp [nnc] Get rid of fuser trigger counters (#57334) 2021-06-29 22:22:15 -07:00
distributed faster generate_square_subsequent_mask in nn.Transformer (#60631) 2021-06-25 16:07:01 -07:00
fastrnns Add lint for unqualified noqa (#56272) 2021-04-19 13:16:18 -07:00
framework_overhead_benchmark Remove py2 compatible future imports (#44735) 2020-09-16 12:55:57 -07:00
functional_autograd_benchmark faster generate_square_subsequent_mask in nn.Transformer (#60631) 2021-06-25 16:07:01 -07:00
instruction_counts Allow instruction counting to use shared memory as a staging ground. (And a couple other tweaks.) (#56711) 2021-05-12 20:37:41 -07:00
operator_benchmark [Pytorch benchmark] Add BMM benchmark (#59595) 2021-06-10 08:24:29 -07:00
overrides_benchmark Remove legacy constructor calls from pytorch codebase. (#54142) 2021-04-11 15:45:17 -07:00
profiler_benchmark Use libkineto in profiler (#46470) 2020-11-25 04:32:16 -08:00
record_function_benchmark Fix D23995953 import. 2020-09-29 19:30:23 -07:00
serialization [JIT] Make new zip serialization for torch save/load significantly (~70%) faster (#38379) 2020-05-29 01:56:18 -07:00
sparse Add CSR (compressed sparse row) layout for sparse tensors (#50937) 2021-04-12 10:09:12 -07:00
static_runtime [Static Runtime] Remove output type constraints (#60669) 2021-06-26 02:36:27 -07:00
tensorexpr [nnc] Added micro-benchmark to show perf improvement with cat subgraph optimization (#59581) 2021-06-18 14:32:09 -07:00
compare-fastrnn-results.py Benchmarks: add scripts for FastRNNs results comparison. (#44134) 2020-09-03 13:44:42 -07:00
compare.sh Benchmarks: add scripts for FastRNNs results comparison. (#44134) 2020-09-03 13:44:42 -07:00
README.md Add CSR (compressed sparse row) layout for sparse tensors (#50937) 2021-04-12 10:09:12 -07:00
upload_scribe.py Benchmarks: make fuser and executor configurable from command line. (#44291) 2020-09-09 11:59:35 -07:00

PyTorch Benchmarks

This folder contains scripts that produce reproducible timings of various PyTorch features.

It also provides mechanisms to compare PyTorch with other frameworks.

Setup environment

Make sure you're on a machine with CUDA, torchvision, and pytorch installed. Install in the following order:

# Install torchvision. It comes with the pytorch stable release binary
conda install pytorch torchvision -c pytorch

# Install the latest pytorch master from source.
# It should supersede the installation from the release binary.
cd $PYTORCH_HOME
python setup.py build develop

# Check the pytorch installation version
python -c "import torch; print(torch.__version__)"

Benchmark List

Please refer to each subfolder to discover each benchmark suite