pytorch/test/cpp/api/fft.cpp
Nikita Shulga 4cb534f92e Make PyTorch code-base clang-tidy compliant (#56892)
Summary:
This is an automatic change generated by the following script:
```
#!/usr/bin/env python3
from subprocess import check_output, check_call
import os

def get_compiled_files_list():
    import json
    with open("build/compile_commands.json") as f:
        data = json.load(f)
    files = [os.path.relpath(node['file']) for node in data]
    for idx, fname in enumerate(files):
        if fname.startswith('build/') and fname.endswith('.DEFAULT.cpp'):
            files[idx] = fname[len('build/'):-len('.DEFAULT.cpp')]
    return files

def run_clang_tidy(fname):
    check_call(["python3", "tools/clang_tidy.py", "-c", "build", "-x", fname,"-s"])
    changes = check_output(["git", "ls-files", "-m"])
    if len(changes) == 0:
        return
    check_call(["git", "commit","--all", "-m", f"NOLINT stubs for {fname}"])

def main():
    git_files = check_output(["git", "ls-files"]).decode("ascii").split("\n")
    compiled_files = get_compiled_files_list()
    for idx, fname in enumerate(git_files):
        if fname not in compiled_files:
            continue
        if fname.startswith("caffe2/contrib/aten/"):
            continue
        print(f"[{idx}/{len(git_files)}] Processing {fname}")
        run_clang_tidy(fname)

if __name__ == "__main__":
    main()
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56892

Reviewed By: H-Huang

Differential Revision: D27991944

Pulled By: malfet

fbshipit-source-id: 5415e1eb2c1b34319a4f03024bfaa087007d7179
2021-04-28 14:10:25 -07:00

159 lines
6.0 KiB
C++

#include <gtest/gtest.h>
#include <torch/torch.h>
#include <test/cpp/api/support.h>
// Naive DFT of a 1 dimensional tensor
torch::Tensor naive_dft(torch::Tensor x, bool forward=true) {
TORCH_INTERNAL_ASSERT(x.dim() == 1);
x = x.contiguous();
auto out_tensor = torch::zeros_like(x);
const int64_t len = x.size(0);
// Roots of unity, exp(-2*pi*j*n/N) for n in [0, N), reversed for inverse transform
std::vector<c10::complex<double>> roots(len);
const auto angle_base = (forward ? -2.0 : 2.0) * M_PI / len;
for (int64_t i = 0; i < len; ++i) {
auto angle = i * angle_base;
roots[i] = c10::complex<double>(std::cos(angle), std::sin(angle));
}
const auto in = x.data_ptr<c10::complex<double>>();
const auto out = out_tensor.data_ptr<c10::complex<double>>();
for (int64_t i = 0; i < len; ++i) {
for (int64_t j = 0; j < len; ++j) {
out[i] += roots[(j * i) % len] * in[j];
}
}
return out_tensor;
}
// NOTE: Visual Studio and ROCm builds don't understand complex literals
// as of August 2020
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(FFTTest, fft) {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
auto t = torch::randn(128, torch::kComplexDouble);
auto actual = torch::fft::fft(t);
auto expect = naive_dft(t);
ASSERT_TRUE(torch::allclose(actual, expect));
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(FFTTest, fft_real) {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
auto t = torch::randn(128, torch::kDouble);
auto actual = torch::fft::fft(t);
auto expect = torch::fft::fft(t.to(torch::kComplexDouble));
ASSERT_TRUE(torch::allclose(actual, expect));
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(FFTTest, fft_pad) {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
auto t = torch::randn(128, torch::kComplexDouble);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
auto actual = torch::fft::fft(t, 200);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
auto expect = torch::fft::fft(torch::constant_pad_nd(t, {0, 72}));
ASSERT_TRUE(torch::allclose(actual, expect));
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
actual = torch::fft::fft(t, 64);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
expect = torch::fft::fft(torch::constant_pad_nd(t, {0, -64}));
ASSERT_TRUE(torch::allclose(actual, expect));
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(FFTTest, fft_norm) {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
auto t = torch::randn(128, torch::kComplexDouble);
// NOLINTNEXTLINE(bugprone-argument-comment)
auto unnorm = torch::fft::fft(t, /*n=*/{}, /*axis=*/-1, /*norm=*/{});
// NOLINTNEXTLINE(bugprone-argument-comment)
auto norm = torch::fft::fft(t, /*n=*/{}, /*axis=*/-1, /*norm=*/"forward");
ASSERT_TRUE(torch::allclose(unnorm / 128, norm));
// NOLINTNEXTLINE(bugprone-argument-comment)
auto ortho_norm = torch::fft::fft(t, /*n=*/{}, /*axis=*/-1, /*norm=*/"ortho");
ASSERT_TRUE(torch::allclose(unnorm / std::sqrt(128), ortho_norm));
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(FFTTest, ifft) {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
auto T = torch::randn(128, torch::kComplexDouble);
auto actual = torch::fft::ifft(T);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
auto expect = naive_dft(T, /*forward=*/false) / 128;
ASSERT_TRUE(torch::allclose(actual, expect));
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(FFTTest, fft_ifft) {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
auto t = torch::randn(77, torch::kComplexDouble);
auto T = torch::fft::fft(t);
ASSERT_EQ(T.size(0), 77);
ASSERT_EQ(T.scalar_type(), torch::kComplexDouble);
auto t_round_trip = torch::fft::ifft(T);
ASSERT_EQ(t_round_trip.size(0), 77);
ASSERT_EQ(t_round_trip.scalar_type(), torch::kComplexDouble);
ASSERT_TRUE(torch::allclose(t, t_round_trip));
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(FFTTest, rfft) {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
auto t = torch::randn(129, torch::kDouble);
auto actual = torch::fft::rfft(t);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
auto expect = torch::fft::fft(t.to(torch::kComplexDouble)).slice(0, 0, 65);
ASSERT_TRUE(torch::allclose(actual, expect));
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(FFTTest, rfft_irfft) {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
auto t = torch::randn(128, torch::kDouble);
auto T = torch::fft::rfft(t);
ASSERT_EQ(T.size(0), 65);
ASSERT_EQ(T.scalar_type(), torch::kComplexDouble);
auto t_round_trip = torch::fft::irfft(T);
ASSERT_EQ(t_round_trip.size(0), 128);
ASSERT_EQ(t_round_trip.scalar_type(), torch::kDouble);
ASSERT_TRUE(torch::allclose(t, t_round_trip));
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(FFTTest, ihfft) {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
auto T = torch::randn(129, torch::kDouble);
auto actual = torch::fft::ihfft(T);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
auto expect = torch::fft::ifft(T.to(torch::kComplexDouble)).slice(0, 0, 65);
ASSERT_TRUE(torch::allclose(actual, expect));
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(FFTTest, hfft_ihfft) {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
auto t = torch::randn(64, torch::kComplexDouble);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
t[0] = .5; // Must be purely real to satisfy hermitian symmetry
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
auto T = torch::fft::hfft(t, 127);
ASSERT_EQ(T.size(0), 127);
ASSERT_EQ(T.scalar_type(), torch::kDouble);
auto t_round_trip = torch::fft::ihfft(T);
ASSERT_EQ(t_round_trip.size(0), 64);
ASSERT_EQ(t_round_trip.scalar_type(), torch::kComplexDouble);
ASSERT_TRUE(torch::allclose(t, t_round_trip));
}