pytorch/torch/utils/data/datapipes/dataframe/dataframes.py
Kevin Tse 0b09d62cf3 [hackathon][DataPipe] adding .pyi file generation for torch.utils.data.datapipes (#67374)
Summary:
Stack from [ghstack](https://github.com/ezyang/ghstack):
* __->__ https://github.com/pytorch/pytorch/issues/67374

This is a work in progress.

Related TorchData issue: https://github.com/pytorch/data/issues/80

cc VitalyFedyunin ejguan NivekT

Pull Request resolved: https://github.com/pytorch/pytorch/pull/67374

Reviewed By: H-Huang

Differential Revision: D32153211

Pulled By: NivekT

fbshipit-source-id: b4c61f191f20fd98ca44bb9e4f972c6d812994a0
2021-11-08 14:43:24 -08:00

293 lines
8.0 KiB
Python

from typing import Any, Dict, List
from torch.utils.data import (
DFIterDataPipe,
IterDataPipe,
functional_datapipe,
)
from torch.utils.data.datapipes.dataframe.structures import DataChunkDF
# TODO(VitalyFedyunin): Add error when two different traces get combined
class DataFrameTracedOps(DFIterDataPipe):
def __init__(self, source_datapipe, output_var):
self.source_datapipe = source_datapipe
self.output_var = output_var
def __iter__(self):
for item in self.source_datapipe:
yield self.output_var.calculate_me(item)
# TODO(VitalyFedyunin): Extract this list from the DFIterDataPipe registred functions
DATAPIPES_OPS = ['_dataframes_as_tuples', 'groupby', '_dataframes_filter', 'map', 'to_datapipe',
'shuffle', 'concat', 'batch', '_dataframes_per_row', '_dataframes_concat', '_dataframes_shuffle']
class Capture(object):
# All operations are shared across entire InitialCapture, need to figure out what if we join two captures
ctx: Dict[str, List[Any]]
def __init__(self):
self.ctx = {'operations': [], 'variables': []}
def __str__(self):
return self.ops_str()
def ops_str(self):
res = ""
for op in self.ctx['operations']:
if len(res) > 0:
res += "\n"
res += str(op)
return res
def __getattr__(self, attrname):
if attrname == 'kwarg':
raise Exception('no kwargs!')
if attrname in DATAPIPES_OPS:
return (self.as_datapipe()).__getattr__(attrname)
return CaptureGetAttr(self, attrname, ctx=self.ctx)
def __getitem__(self, key):
return CaptureGetItem(self, key, ctx=self.ctx)
def __setitem__(self, key, value):
self.ctx['operations'].append(
CaptureSetItem(self, key, value, ctx=self.ctx))
def __add__(self, add_val):
res = CaptureAdd(self, add_val, ctx=self.ctx)
var = CaptureVariable(res, ctx=self.ctx)
self.ctx['operations'].append(
CaptureVariableAssign(variable=var, value=res, ctx=self.ctx))
return var
def __sub__(self, add_val):
res = CaptureSub(self, add_val, ctx=self.ctx)
var = CaptureVariable(res, ctx=self.ctx)
self.ctx['operations'].append(
CaptureVariableAssign(variable=var, value=res, ctx=self.ctx))
return var
def __mul__(self, add_val):
res = CaptureMul(self, add_val, ctx=self.ctx)
var = CaptureVariable(res, ctx=self.ctx)
t = CaptureVariableAssign(variable=var, value=res, ctx=self.ctx)
self.ctx['operations'].append(t)
return var
def as_datapipe(self):
return DataFrameTracedOps(
self.ctx['variables'][0].source_datapipe, self)
def raw_iterator(self):
return self.as_datapipe().__iter__()
def __iter__(self):
return iter(self._dataframes_as_tuples())
def batch(self, batch_size=10, drop_last: bool = False, unbatch_level: int = 0, wrapper_class=DataChunkDF):
dp = self._dataframes_per_row()._dataframes_concat(batch_size)
dp = dp.as_datapipe().batch(1, drop_last=drop_last, unbatch_level=unbatch_level, wrapper_class=wrapper_class)
dp._dp_contains_dataframe = True
return dp
def groupby(self,
group_key_fn,
*,
buffer_size=10000,
group_size=None,
unbatch_level=0,
guaranteed_group_size=None,
drop_remaining=False):
if unbatch_level != 0:
dp = self.unbatch(unbatch_level)._dataframes_per_row()
else:
dp = self._dataframes_per_row()
dp = dp.as_datapipe().groupby(group_key_fn, buffer_size=buffer_size, group_size=group_size,
guaranteed_group_size=guaranteed_group_size, drop_remaining=drop_remaining)
return dp
def shuffle(self, *args, **kwargs):
return self._dataframes_shuffle(*args, **kwargs)
def filter(self, *args, **kwargs):
return self._dataframes_filter(*args, **kwargs)
class CaptureF(Capture):
def __init__(self, ctx=None, **kwargs):
if ctx is None:
self.ctx = {'operations': [], 'variables': []}
self.ctx = ctx
self.kwargs = kwargs
class CaptureCall(CaptureF):
def __str__(self):
return "{variable}({args},{kwargs})".format(**self.kwargs)
def execute(self):
return (get_val(self.kwargs['variable']))(*self.kwargs['args'], **self.kwargs['kwargs'])
class CaptureVariableAssign(CaptureF):
def __str__(self):
return "{variable} = {value}".format(**self.kwargs)
def execute(self):
self.kwargs['variable'].calculated_value = self.kwargs['value'].execute()
class CaptureVariable(Capture):
value = None
name = None
calculated_value = None
names_idx = 0
def __init__(self, value, ctx):
self.ctx = ctx
self.value = value
self.name = 'var_%s' % CaptureVariable.names_idx
CaptureVariable.names_idx += 1
self.ctx['variables'].append(self)
def __str__(self):
return self.name
def execute(self):
return self.calculated_value
def calculate_me(self, dataframe):
self.ctx['variables'][0].calculated_value = dataframe
for op in self.ctx['operations']:
op.execute()
return self.calculated_value
class CaptureInitial(CaptureVariable):
def __init__(self):
new_ctx: Dict[str, List[Any]] = {'operations': [], 'variables': []}
super().__init__(None, new_ctx)
self.name = 'input_%s' % self.name
class CaptureGetItem(Capture):
left : Capture
key : Any
def __init__(self, left, key, ctx):
self.ctx = ctx
self.left = left
self.key = key
def __str__(self):
return "%s[%s]" % (self.left, get_val(self.key))
def execute(self):
return (self.left.execute())[self.key]
class CaptureSetItem(Capture):
left : Capture
key : Any
value : Capture
def __init__(self, left, key, value, ctx):
self.ctx = ctx
self.left = left
self.key = key
self.value = value
def __str__(self):
return "%s[%s] = %s" % (self.left, get_val(self.key), self.value)
def execute(self):
(self.left.execute())[
self.key] = self.value.execute()
class CaptureAdd(Capture):
left = None
right = None
def __init__(self, left, right, ctx):
self.ctx = ctx
self.left = left
self.right = right
def __str__(self):
return "%s + %s" % (self.left, self.right)
def execute(self):
return get_val(self.left) + get_val(self.right)
class CaptureMul(Capture):
left = None
right = None
def __init__(self, left, right, ctx):
self.ctx = ctx
self.left = left
self.right = right
def __str__(self):
return "%s * %s" % (self.left, self.right)
def execute(self):
return get_val(self.left) * get_val(self.right)
class CaptureSub(Capture):
left = None
right = None
def __init__(self, left, right, ctx):
self.ctx = ctx
self.left = left
self.right = right
def __str__(self):
return "%s - %s" % (self.left, self.right)
def execute(self):
return get_val(self.left) - get_val(self.right)
class CaptureGetAttr(Capture):
source = None
name: str
def __init__(self, src, name, ctx):
self.ctx = ctx
self.src = src
self.name = name
def __str__(self):
return "%s.%s" % (self.src, self.name)
def execute(self):
val = get_val(self.src)
return getattr(val, self.name)
def get_val(capture):
if isinstance(capture, Capture):
return capture.execute()
elif isinstance(capture, str):
return '"%s"' % capture
else:
return capture
@functional_datapipe('trace_as_dataframe')
class DataFrameTracer(CaptureInitial, IterDataPipe):
source_datapipe = None
def __init__(self, source_datapipe):
super().__init__()
self.source_datapipe = source_datapipe