pytorch/torch/csrc/autograd/python_function.h
Edward Yang 0aaff5eaf9 Replace CUDA-specific set_index(_from) method from DeviceGuard with set_device. (#13275)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13275

This resulted in a bunch of knock-on changes, which I will now
describe:

- s/original_index/original_device/
- s/last_index/last_device/
- A bunch of places that used set_index, now use CUDAGuard (which does have
  set_index) because they were CUDA-specific code.

Major caveat: DeviceGuard doesn't *actually* work non-CUDA/CPU devices, To make
that happen, I plan on totally replacing the implementation of DeviceGuard; what
I mostly care about here is wrangling the API into an acceptable state.

Reviewed By: gchanan

Differential Revision: D12832080

fbshipit-source-id: 7de068c7cec35663dc8a533026a626331336e61d
2018-10-31 07:55:13 -07:00

109 lines
3.2 KiB
C++

#pragma once
#include "torch/csrc/python_headers.h"
#include "torch/csrc/Exceptions.h"
#include "torch/csrc/autograd/function.h"
#include "torch/csrc/autograd/variable.h"
#include "torch/csrc/autograd/saved_variable.h"
#include "torch/csrc/utils/object_ptr.h"
#include "c10/util/Optional.h"
#include <vector>
#include <utility>
#include <memory>
namespace at {
struct DeviceGuard;
} // namespace at
namespace torch { namespace jit { struct Graph; }}
namespace torch { namespace autograd {
struct VariableInfo {
explicit VariableInfo(const Variable& var);
Variable zeros(at::DeviceGuard& device_guard) const;
at::Type* type;
at::Device device = at::kCPU;
std::vector<int64_t> size;
bool requires_grad;
};
// A Function which is implemented by a Python object (i.e., a THPFunction).
// Calls to 'apply' are forwarded to the Python method implementation.
struct PyFunction : public Function {
PyFunction(PyObject* obj) : obj(obj) {}
virtual variable_list apply(variable_list&& inputs) override;
variable_list legacy_apply(const variable_list& inputs);
virtual void release_variables() override;
virtual std::string name() const override;
virtual std::shared_ptr<Function> get_shared_ptr() override;
virtual bool is_traceable() override;
// THPFunction this Function is wrapping.
PyObject* obj;
};
/**
* Cast an object into a tuple, if it is not a tuple already. Returns true
* if the original object was not a tuple.
*/
inline bool ensure_tuple(THPObjectPtr& obj) {
if (PyTuple_Check(obj.get()))
return false;
PyObject *tuple = PyTuple_New(1);
if (!tuple) throw python_error();
PyTuple_SET_ITEM(tuple, 0, obj.release());
obj = tuple;
return true;
}
}} // namespace torch::autograd
struct THPFunction {
PyObject_HEAD
PyObject *needs_input_grad;
// Python tuple of tensors whose variables we should save. Set
// by Python with 'save_for_backward'. If nullptr, no tensors were
// saved.
PyObject *to_save;
// Python tuple of tensors which are not differentiable. Set by
// Python with 'mark_non_differentiable'. If nullptr, no tensors were
// non-differentiable.
PyObject *non_differentiable;
// Python tuple of tensors which had inplace updates in the forward()
// pass. Set by Python with 'mark_dirty'. If nullptr, no tensors were
// modified inplace.
PyObject *dirty_tensors;
std::vector<torch::autograd::VariableInfo> output_info;
std::vector<torch::autograd::VariableInfo> input_info;
std::vector<torch::autograd::SavedVariable> saved_variables;
// For each input, true if the input is a THPVariable
std::vector<bool> is_variable_input;
char has_freed_buffers;
// The C++ wrapper for this Python function.
// See a comment in THPFunction_asFunction for details about this field.
torch::autograd::PyFunction cdata;
};
bool THPFunction_initModule(PyObject *module);
extern PyTypeObject THPFunctionType;
extern PyObject *THPFunctionClass;
// XXX: this function requires the GIL (it can have side effects).
std::shared_ptr<torch::autograd::PyFunction> THPFunction_asFunction(THPFunction* self);
inline bool THPFunction_Check(PyObject* obj) {
return PyObject_IsInstance(obj, (PyObject*)&THPFunctionType);
}