mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: The predictor export functions allowed a way to specify a net type, but no way to specify num_workers for when you use net type 'dag'. This adds that option to the PredictorExportMeta named tuple and populates the field in the exported protobuf. Also added parameters to callsites in NMT ensemble model class and model repackager to populate net_type and num_workers. Using DAGNet for our base predictor net (not recurrent stepnets) speeds up our inference by 1.15x, since we can now run encoder forward and backward RecurrentNet's for each model in the ensemble in parallel. Reviewed By: salexspb Differential Revision: D5792203 fbshipit-source-id: cb9a8237a0cbe1a09645d4de051dfbb23f06dcfa |
||
|---|---|---|
| .. | ||
| mobile_exporter_test.py | ||
| mobile_exporter.py | ||
| predictor_exporter_test.py | ||
| predictor_exporter.py | ||
| predictor_py_utils.py | ||
| serde.py | ||